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Energy flow in the cochlea 

By JAMES LIGHTHILL 
University College London 

With moderate acoustic stimuli, measurements of basilar-membrane vibration (espe- 
cially, those using a Mossbauer source attached to the membrane) demonstrate: 

(i) a high degree of asymmetry, in that the response to a pure tone falls extremely 
sharply above the characteristic frequency, although much more gradually below it; 

(ii) a substantial phase-lag in that response, and one which increases monotonically 
up to the characteristic frequency; 

(iii) a response to a ‘click’ in the form of a delayed ‘ringing’ oscillation at the 
characteristic frequency, which persists for around 20 cycles. 
This paper uses energy-flow considerations to identify which features in a mathe- 
matical model of cochlear mechanics are necessary if i t  is to reproduce these experi- 
mental findings. 

The response (iii) demands a travelling-wave model which incorporates an only 
lightly damped resonance. Admittedly, waveguide systems including resonance are 
described in classical applied physics. However, a classical waveguide resonance 
rejlects a travelling wave, thus converting it into a standing wave devoid of the sub- 
stantial phase-lag (ii) ; and produces a low-frequency cutoff instead of the high-frequency 
cutoff (i). 

By contrast, another general type of travelling-wave system with resonance has 
become known more recently; initially, in a quite different context (physics of the 
atmosphere). This is described as critical-layer resonance, or else (because the reso- 
nance absorbs energy) critical-layer absorption. It yields a high-frequency cutoff; but, 
above all, it is characterized by the properties of the energy flow velocity. This falls 
to zero very steeply as the point of resonance is approached; so that wave energy flow 
is retarded drastically, giving any light damping which is present an unlimited time 
in which to dissipate that energy. 

Existing mathematical models of cochlear mechanics, whether using one-, two- or 
three-dimensional representations of cochlear geometry, are analysed from this stand- 
point. All are found to have been successful (if only light damping is incorporated, 
as (iii) requires) when and only when they incorporate critical-layer absorption. 
This resolves the paradox of why certain grossly unrealistic one-dimensional models 
can give a good prediction of cochlear response; it is because they incorporate the one 
essential feature of critical-layer absorption. 

At any point in a physical system, the high-frequency limit of energy flow velocity 
is the slope of the graph of frequency against wavenumber? at  that point. In the 
cochlea, this is a good approximation a t  frequencies above about 1 kHz; and, even 
a t  much lower frequencies, remains good for wavenumbers above about 0.2 mm-l 
(which excludes only a relatively unimportant region near the base). 

Frequency of vibration at  any point can vary with wavenumber either because 
t In  any travelling wave, the wavenumber is the rate of change of phase with distance; for 

example, it is 2n/A in a sine wave of length A .  
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stiffness or inertia varies with wavenumber. However, we find that models incor- 
porating a wavenumber-dependent membrane stiffness must be abandoned because 
they fail to give critical-layer absorption; this is why their predictions (when realistic- 
ally light damping is used) have been unsuccessful. Similarly, models neglecting the 
inertia of the cochlear partition must be rejected. 

One-dimensional modelling becomes physically unrealistic for wavenumbers above 
about 0.7 mni-1, and the error increases with wavenumber. The main trouble is that 
a one-dimensional theory makes the effective inertia ‘flatten out ’ to its limiting value 
(inertia of the cochlear partition alone) too rapidly as wavenumber increases. Fortu- 
nately, a two-dimensional, or even a three-dimensional, model can readily be used to 
calculate a more realistic, and significantly more gradual, ‘flattening out’ of this 
inertia. All of the models give a fair representation of the experimental data, because 
they all predict critical-layer absorption. However, the more realistic two- or three- 
dimensional models must be preferred. These retard the wave energy flow still more, 
thus facilitating its absorption by even a very modest level of damping. The paper 
indicates many other features of these models. 

The analysis described above is preceded by a discussion of waves generated a t  the 
oval window. They necessarily include: 

( a )  the already-mentioned travelling wave, or ‘slow wave’, in which the speed of 
energy flow falls from around 100 m s-l at the base to zero at  the position of resonance; 

( b )  a pure sound wave, or ‘fast wave’, travelling a t  1400 m s-1, with reflection at  
the apex which makes i t  into a standing wave. Half of the rate of working of the stapes 
footplate against the oval window is communicated as an energy flow a t  this much 
higher speed down the scala vestibuli, across the cochlear partition and back up the 
scala tympani to the round window, whence it becomes part of the slow general apical 
progress of the travelling wave; a progress which, as described above, comes to a halt 
altogether just in front of the position of resonance. 

Mathematical detail is avoided in the discussion of cochlear energy flow in the main 
part of the paper (9s 1-10), but a variety of relevant mathematical analysis is given 
in appendices A-E. These include, also, new comments about the functions of the 
tunnel of Corti (appendix A) and the helicotrema (appendix C). 

1. Introduction 
This paper is an attempt to review the literature concerned with the mechanical 

response of the cochlea to  stimuli low enough in amplitude for that  response to be 
linear. Both the experimental data (BBkBsy 1960; Johnstone, Taylor & Boyle 1970; 
Rhode 1971, 1973; Kohlloffel 1972, 1973; Wilson & Johnstone 1975; Robles, Rhode 
& Geisler 1976; Gunderson, Skarstein & Sikkeland 1978) and the mathematical models 
(Zwislocki 1948, 1965; Ranke 1950; Peterson & Bogert 1950; Bogert 1950; Fletcher 
1951; Lesser & Berkley 1972; Berkley & Lesser 1973; Schroeder 1973; Steele 1974, 
1976; Steele & Taber 1979a, b ;  Siebert 1974; Zweig 1976; Zweig, Lipes & Pierce 
1976; Geisler 1976; Cole & Chadwick 1977; Allen 1977; de Boer 1979; Viergever 1980) 
are discussed from the unifying standpoint of energy-flow considerations. On the 
other hand, there is almost no reference to: 

(i) mechanics of the middle ear (except for its interaction with questions of cochlear 
input impedance) ; 
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(ii) those nonlinear effects which are observed to modify cochlear response a t  very 
high stimulus levels and, also, are presumed responsible for the enigmatic properties 
of combination tones; 

(iii) the role of the hair cells is transduction of the cochlea’s mechanical response 
into neural activity; 

(iv) the neurophysiology of hearing. 
Cochlear mechanics is, of course, important as providing a ‘first filter’ in the 

frequency-analysing function of the auditory system. The personal work of three 
decades summarized in the book of BBkBsy (1960) first gave clear experimental proof 
of this. See, for example, the graphs on page 454, which plot vibrational amplitudes as 
a function of frequency for six positions along the cochlear partition, as measured by 
BBk6sy in a human cadaver a t  extremely high stimulus levels. They show a fairly 
sharp maximum response a t  the characteristic frequency of each position. 

Nevertheless, BBkBsy realized that the sharpness he measured was insufficient to 
explain the ear’s accuracy in frequency discrimination, and he postulated a neuro- 
physiological ‘ sharpening up ’ process. When BBkBsy’s only moderately sharp tuning 
curves were compared later with the enormously sharper tuning curves of auditory 
nerve fibres as measured by Kiang et al. (1965)) the need to postulate a ‘second filter’ 
operating either a t  the transduction stage or a t  the neurological stage became uni- 
versally accepted. 

Still more recent evidence, however, while generally supporting the need for a 
second filter, has tended to re-emphasize, and to strengthen belief in, the great im- 
portance of the first filter provided by the cochlea’s mechanical response. The principal 
evidence came from two new experimental methods, using (a )  the Mossbauer tech- 
nique (Johnstone et al. 1970; Rhode 1971, 1973) and ( b )  laser-light fuzziness detection 
(Kohlloffel 1972, 1973). Both allowed the measurement of basilar-membrane vibration 
in vivo at stimulus levels moderate enough to minimize nonlinear modifications of the 
response curve. 

Under these conditions, the measured response curve fell off extremely sharply 
above the characteristic frequency, although much more gradually below it. Such 
asymmetry is also a prominent feature of tuning curves for auditory nerve fibres, as 
was re-emphasized in the measurements of Evans & Wilson (1973) and Kiang & 
Moxon (1974). Indeed, the combined data suggest that this important phenomenon 
(the large difference in steepness of tuning curves above and below the characteristic 
frequency) is due mainly to the cochlear-mechanics first-filter effect. It would then be 
sufficient to assume that a seco2d filter, which recent work of Fettiplace & Crawford 
(1978) suggests may reside in the hair cells themselves (at least for frequencies less 
than about 1 kHz), generates a largely symmetrical further sharpening of response, 
relatively more modest in significance. 

On this interpretation, the special psychophysical importance of the mechanics of 
the cochlea derives from the extremely sharp fall-off of auditory response curves 
which it produces above the characteristic frequency. This type of mechanical response, 
besides being important psychophysically, is also interesting from the point of view 
of mechanics. It is not surprising, then, that the increasingly precise data available 
on basilar-membrane response have stimulated experts in the mechanics of interacting 
motions of fluids and solids to aim a t  increasingly precise descriptions of cochlear 
mechanics. 
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Earlier, the work of BBkBsy had stimulated the development of some interesting 
mathematical models, starting with the work of Zwislocki (1948) and Ranke (1950). 
Thc most impressive of these (Peterson & Bogert 1950) went far towards predicting 
the extraordinary steepness of the tuning curve’s high-frequency side under linear- 
response conditions, which was to be experimentally demonstrated two decades later 
by Rhode (1971) and others. This steepness, in fact, is clearly visible in Peterson & 
Bogert’s figure 20, for a limiting case of zero damping, and would have been preserved 
after the incorporation of a small amount of damping. However, those authors pre- 
ferred to put all their emphasis on conclusions for a model with rather large damping 
(Bogert 1950) because they were seeking agreement with the blunt tuning curves that 
BBkBsy (albeit a t  extremely high stimulus levels, for which large nonlinear effects are 
known to be present) had obtained. 

Later, when the new experimental techniques allowing measurements of basilar- 
membrane vibration at moderate stimulus levels had demonstrated the enormously 
steep slope of the tuning curve above the characteristic frequency (a slope measured 
already by Johnstone et al. (1970)’ for example, as 95 dB/octave for the guinea pig 
cochlea), this striking characteristic of cochlear mechanics stimulated the construc- 
tion of many new mathematical models. They included ingenious developments 
(Schroeder 1973; Zweig 1976) from the one-dimensional models pioneered by Zwislocki 
(1948), Peterson & Bogert (1950) and Fletcher (1951); that is, models in which changes 
of pressure are taken as uniform within each cross-section of the scala vestibuli (and, 
similarly, within each cross-section of the scala tympani). 

At the same time, the two-dimensional type of model pioneered by Ranke (1950), 
which allows fluid disturbances in a scala cross-section to vary with distance from 
the cochlear partition, was developed much further by Lesser & Berkley (1972), 
Siebert (1974) and Allen (1977). Furthermore, this increase in the realism of the 
models was taken still further in the three-dimensional models of Steele (1974, 1976) 
which allowed for disturbances in the fluid to vary also across the width of the cochlear 
partition. One general conclusion from the two- and three-dimensional models was 
that, although the fluid disturbances must indeed be effectively one-dimensional near 
the base, they cannot be even approximately one-dimensional near the position of 
maximum disturbance. 

The different models are discussed in this paper from two points of view. One of 
these is to anaIyse what features a model needs if it is to show the sharp asymmetry 
of amplitude distribution and monotonicity of phase distribution characteristic of all 
the refined measurements of basilar-membrane vibration. This analysis is used to 
explain why the features in question, obviously essential to a satisfactory model, are 
present in some (but not all) one-dimensional models as well as in some (but not all) 
two- and three-dimensional models. 

Besides applying, as it were, such a ‘first filter’ to the available models, the paper 
goes on to apply a ‘second filter’; this discriminates among all those different models 
that  lead to broadly correct types of amplitude and phase distribution by giving 
preference to those with the most physically realistic assumptions. The discussion 
here reinforces conclusions by Steele (1976) that  a three-dimensional model’s clear 
advantage from this point of view outweighs the only moderately greater complexity 
in analysis which it need entail. The discussion includes also a critical review of the 
very various assumptions by different authors regarding the distribution of the coch- 
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lear partition’s stiffness and inertia. In  addition, it points out, as did Geisler (1976)’ 
that it is undesirable to neglect either the compressibility of the cochlear fluids, which 
can affect response a t  very high frequencies, or the fluid mechanics of the helicotrema, 
which is significant a t  very low frequencies. Methods of properly taking these into 
account were indicated by Peterson & Bogert (1 950) and by Fletcher ( 1  951), respec- 
tively, and are developed further in this paper. 

2. Significance of the cross-sectional mean pressure 
The analysis starts, in fact, by considering a separation of the pressure distribution 

within a cochlear cross-section into (i) its mean value, P, over the cross-section’s area 
(on both sides of the cochlear partition), and (ii) its deviation from the mean, p (taking 
opposite signs on the partition’s two sides). For the details of this analysis, see appendix 
A. It is the distribution of p (a generalization of Peterson & Bogert’s p-) which is 
analysed by most model-builders and takes the well-known travelling-wave form, 
with phase decreasing from base to apex. 

By contrast, P is a generalization of Peterson & Bogert’s p+ and may be rather 
accurately given by their calculation as an acoustic standing wave. Its  presence may 
need to be taken into account in interpreting certain data; and, in particular, the 
observation that the high-frequency limit of phase was always an integer multiple of 
n- in the experiments of Rhode (1971). Such behaviour is inconceivable in a travelling- 
wave system. 

Physically, the standing wave is generated as a combination of a sound wave travel- 
ling from base to apex and its reflection (a sound wave travelling from apex to base). 
The combined wave involves motions which are in phase a t  all points of the cochlea. 

Thus, the main travelling-wave distribution of pressure deviations from the mean, 
p ,  is necessarily accompanied by a more modest standing-wave distribution of cross- 
sectional mean pressures P, all vibrating in phase with the motion of the stapes. It 
is possible (see appendix A for details) that these can generate a small in-phase 
motion of the cochlear partition as a whole (including the basilar membrane) which 
Rhode picked up a t  the measurement site as the leading signal for frequencies above 
the characteristic frequency, These are frequencies at which the energy in the main 
travelling wave is absorbed before the measurement site is reached. In  that case, the 
monotonic change in phase characteristic of a travelling wave would continue to be 
measured until (as the characteristic frequency was exceeded) the travelling wave was 
suppressed in favour of the in-phase standing-wave behaviour generated in the coch- 
lea as a whole by the mean pressure P. The method of inferring phase from the measure- 
meants would then reckon it to make a transition to a neighbouring multiple of 7r 
corresponding to an in-phase motion. 

A second interesting feature of the standing-wave behaviour of the cross-sectional 
mean pressure P is Peterson & Bogert’s prediction of a resonant acoustic response 
of the whole cochlea in this mode a t  a particular high frequency around 12 kHz. 
That may need to be borne in mind in any discussions of cochlear damage by high- 
frequency sound.? However, this paper’s main concern with the distribution of cross- 
sectional mean pressure P is in the context of energy flow. 

resonance. 
t See appendix A for discussion of a possible function of the tunnel of Corti in damping this 

6 F L h l  I06 



154 J. Light hi1 1 

The best-known feature of energy flow in the cochlea is that  energy travels (that is, 
moves in the form of a ‘travelling wave ’) from the base towards the apex, but becomes 
dissipated before reaching the apex except a t  low frequencies (below about 300 Hz). 
The energy in question takes two forms: potential energy associated with the elastic 
properties of the cochlear partition, and kinetic energy associated with the inertia 
of the cochlear partition and of the fluid motion outside it. Chapters 11 and 12 of 
BBkBsy (1960) amass a large amount of evidence for this travelling-wave interpretation 
of cochlear mechanics, and the newer measurements a t  moderate stimulus levels such 
as those of Rhode (1971) have put the mat’ter beyond any doubt; especially, through 
their demonstration that the phase of basilar-membrane vibration a t  a fixed point 
varies monotonically as the frequency increases up to its characteristic value. 

On the other hand, the fact that  a significant fraction of the total energy in the 
travelling wave consists of the kinetic energy of the fluid in the scala tympani appears 
to  raise problems; essentially, because the only power source (the rate of working by 
the stapes footplate against the oval window) acts exclusively on the fluid in the scala 
vestibuli. Only a consideration of how the cross-sectional mean pressure P propagates 
a t  the speed of sound can explain how a part of that rate of working is communicated 
at this very high speed down part of the scala vestibuli, across the cochlear partition 
and back up the scala tympani to the round window, whence the energy flow can 
become part of the slow general apical progress of the travelling wave (appendix A). 

Related considerations resolve the apparent paradox in the experiments reported 
by Wever & Lawrence (1954) on page 275. They found, in a cat’s cochlea, very similar 
disturbance patterns (as estimated by the distributions of cochlear potentials) whether 
it was acoustically stimulated a t  the base or a t  the apex. They questioned whether this 
was consistent with the idea of a wave travelling from base to apex and being dissi- 
pated en route. Analysis in appendix A shows, however, why with apical stimulation 
the energy travels (carrying a distribution of cross-sectional mean pressure P) a t  the 
speed of sound from apex to  base, where (because of the differing impedances of the 
round and oval windows) i t  sets up a slow, apically travelling wave of deviations p 
from that cross-sectional mean. 

Another, similar question treated briefly in appendix A is concerned with those 
familiar, and rather modest, alterations in cochlear disturbance patterns that occur 
when the scala tympani has been drained. Apart from the present section and appendix 
A, however, the rest of the paper deals with the classical subject matter of cochlear 
mechanics: the main travelling wave carrying pressure deviations p from the cross- 
sectional mean. 

3. Travelling-wave models and resonance 
BBkdsy ( 1  960) tended to draw a sharp distinction between his ‘ travelling-wave ’ 

interpretation of cochlear mechanics and any possible ‘resonance’ theory. It is, of 
course, true that no simple resonating system with one degree of freedom (such as 
Helmholtz originally proposed) could show even the limited asymmetry of frequency 
response which BBk6sy himself found, let alone the extremely one-sided steepness 
of response reduction (that is, steepness above, but not below, the characteristic 
frequency) found a t  moderate stimulus levels. 

Huxley (1969) pointed out, however, that a combinatio92 of a travelling-wave system 
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and a resonant system is conceivable; in such a system, a travelling wave would carry 
energy along to  the position of resonance, where i t  would remain in a local oscillation 
until i t  were damped. He proposed, as a practical test of whether resonance in this 
sense was acting (essentially, to  limit the travel of the wave) the criterion: do we 
observe that ‘incoming energy is stored over a considerable number of cycles in a 
mechanically oscillating structure ’ 1 

A clear affirmative answer to  this question was given by the experiments of Robles 
et al. (1976). They used the Mossbauer technique to measure the response of the basilar 
membrane of a squirrel monkey in vivo to acoustic clicks 0.15 ms in duration. After 
the expected delay (time required for the travelling wave to  reach the observation 
site) the basilar membrane’s response was oscillatory with a period near that of its 
characteristic frequency; and i t  did indeed continue for ‘a considerable number of 
cycles ’ (typically, 15-25). 

These results are consistent with the idea that damping is relatively light. They 
suggest, indeed, that  a mathematical model for cochlear mechanics should be rejected 
if it can achieve good prediction of characteristic frequencies only by assuming large 
damping coefficients. Rather, there is a need for mathematical models which combine 
travelling-wave features and resonance features and which predict, even with quite 
small damping, the necessary sharp fall-off of amplitude above the characteristic 
frequency. 

Wave physics distinguishes between two main types of lightly damped travelling- 
wave systems which exhibit resonance (at a different frequency for each point). Of 
these two types, one is much more widely familiar to physicists because it is extremely 
commonly found; especially, in waveguides of all kinds. We shall call this first type of 
resonance in a travelling-wave system ‘classical waveguide resonance ’. It is charac- 
terized by three main properties, as follows: 

(i) a t  each point, the frequency for which resonance occurs is a lowfrequency cutoff; 
that is, no wave energy a t  frequencies below the resonant frequency can pass the 
point; 

(ii) as a travelling wave of fixed frequency w approaches the point where the reso- 
nant frequency is w ,  its wavelength increases, although the speed of travel of the wave 
energy is gradually reduced; 

(iii) nevertheless, wave energy a t  frequency w reaches the point where the resonant 
frequency is w after a finite time, when it is immediately reJEected. 

Although the cochlea is certainly a waveguide, we see that it is not a ‘classical 
waveguide’ of the type exhibiting this kind of resonance. Indeed, i t  has properties 
opposite to (i), (ii) and (iii): the characteristic frequency a t  a point is a high-frequency 
cutoff; furthermore, as a wave of frequency w approaches the point whose character- 
istic frequency is w ,  its wavelength decreases; and, finally, the possibility of significant 
wave energy undergoing reflection from that point (which would make the wave 
more of a standing wave than a travelling wave) is ruled out by the phase measure- 
ments.? For example, Rhode (1971) found large phase lags (around 777 or more) of 
basilar-membrane displacement behind stapes displacement a t  the characteristic 
frequency. 

I n  this connection it should be noted that the experiments dernonstrating high resonance 
peaks at moderate stimulus levels suggest light damping, which in the moderate time required 
for reflection according to  ( 1 1 1 )  ahore 11 onld imply small energy loss before reflection. 

6 2  
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Frcrrn~ 1. (a )  Plot of radian frequency w against wavenumber k ,  exhibiting low-frequency cut- 
off at a resonant frequoncy w, (as in classical waveguide resonance). The plot’s necessarily 
pozitive slope U at a point P is the wave’s ‘group velocity’ (speed at which it transmits energy) 
for the corresponding frequency and wavenumber. The perpendicular (broken lino) dropped 
from P on to  the line w = w, is of length w - w , .  The tangent at P (dotted line), with slope U ,  
intersects the line w = w, a t  a distance ( w  - w,) /  U from the foot of that  perpendicular. Evidently, 
this distance decreases to  zero as P moves along the curve to the left. Thus, although both 
o - w ,  and the slope U become smaller as P moves towards k = 0, they do so in such a way 
that the ratio ( w - w , ) / U  decreases to zero. We can say, then, that  U tends to zero much more 
gradually than w - w, itself. ( b )  Frequency-wavenumber plot with high-frequency cutoff at  
a resonant frequency w, (as in critical-layer absorption). The perpendicular (broken line) dropped 
from P on to  the line w = wr is now of length 0,- w. The tangent at P (dotted line) with positive 
slope U intersects the line w = w, at a distance (w,- w ) / U  from the foot of that perpendicular. 
This distance increases indefinitely as P moves along the curve to t,lie right (see appendix B 
for a demonstration of this for any dispersion relationship of the algebraic kind tliat necessarily 
results from physical properties described by differential equations). It follows tliat U tends to 
zero much more rapidly than o, - w it,self. 

4. Critical-layer absorption 
The more recently discovered type of resonance in a travelling-wave system 

(Booker & Bretherton 1967) is called ‘ critical-layer resonance ’ or else (because the 
resonance absorbs energy) ‘ critical-layer absorption ’. It is characterized by three 
main properties, as follows: 

(i)  a t  each point, the frequency for which resonance occurs is such that no wave 
energy a t  frequencies above it  can pass the point; 
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(ii) as waves of that  frequency approach the point, their wavelength decreases 
towards zero, while the speed of travel of their wave energy is rapidly reduced; 

(iii) this reduction of travel speed with distance from the point is so rapid that the 
wave energy would require infinite time to reach that point; accordingly, no possi- 
bility of reflection can arise and any damping rate however light will remove all of 
that energy before it reaches the point. 

It is important to  note that properties (i), (ii) and (iii) all go together, being essen- 
tially consequences of one another, in critical-layer absorption; and that  the same is 
true of the corresponding properties (i), (ii) and (iii) for classical waveguide resonance 
described in 5 3. These logical relationships are most clearly intelligible from the classi- 
cal law that wave energy travels, not a t  the speed of individual crests, but at a different 
speed called the group velocity, whose value can be determined from a frequency- 
wavenumber plot. 

Here, the ‘ wavenumber ’ k is defined in a travelling wave as the rate of change of 
phase (in radians) with distance of travel. For example, when Rhode (1971) measured 
phase a t  two points on the squirrel-monkey basilar membrane a t  a distance 1.5 mm 
apart, he obtained data which can be used (see appendix B) to  estimate the wave- 
number (rate of decrease of phase with distance) between those points. Of course in 
a sinusoidal wave of wavelength h we have k = 2n/h since the phase changes by 2n 
per wavelength; but our definition specifies k for much more general, non-sinusoidal 
waves in terms of their phase gradient. 

Similarly, we use a radian frequency w (in radians per second) which is 2n times 
the ordinary frequency in hertz (cycles per second). On a plot of w against the wave- 
number k observed for waves of that  frequency at a given point, the group velocity 
U at  that  point is given by the slope (that is, gradient) of the curve. This slope must 
be positive (making w an increasing fiinction of k )  if energy is to travel in the direction 
of decreasing phase. 

Accordingly, for classical waveguide resonance ( 5  3)) property (i) implies a frequency- 
wavenumber plot like figure 1 (a).  I n  other words, with low-frequency cutoff at the 
resonant frequency w,, a frequency-wavenumber plot of positive slope must increase 
from the value w = w, a t  the lowest value of wavenumber (property (ii)); namely, 
k = 0 (for which the associsted wavelength becomes large). Thus, the excess ( w - u , )  
of wave frequency w over the resonant frequency w, tends to zero as k -+ 0. It commonly 
happens that the slope U of the curve in such a case also tends to zero, but if so i t  can 
only tend to  zero much more gradually than (w-w, )  itself. It is this property of the 
slope (that is, of the group velocity U a t  which the energy propagates) that  allows 
energy of fixed frequency w to  reach the point where w, = w in a finite time (property 
(iii)).. . . Such a point is known in classical waveguide theory as a ‘turning point’, 
and a special type of mathematical representation of the amplitude distribu- 
tion (based on the ‘Airy function’) is used to describe behaviour near a turning 
point. 

By contrast, with critical-layer absorption as described in this section, property (i) 
implies a frequency-wavenumber plot like figure 1 ( b )  ; thus, with high-frequency 
cutoff a t  the resonant frequency w,, a frequency-wavenumber plot of positive slope 
must rise up to the value w = w, as k increases to indefinitely large values (property 
(ii)). The frequency defect (w, - w )  then tends to zero as k becomes large. This requires, 
however, that  the slope C r  tends to zero mnch more rapidly than ( o r  - w )  itself. This 
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property of the velocity a t  which the energy propagates means that energy of fixed 
frequency would require infinite time to  reach the point where w, = w (property 
(iii)). 

For fuller developments of these arguments, see appendix B. To sum them up, 
there is a sharp division between the two ways in which resonance may occur within 
a lightly damped travelling-wave system. For a mathematical model of the cochlea, 
none of the three basic properties of a classical waveguide resonance would be accept- 
able (and, in fact, each implies the other two). By contrast, all three basic properties 
of a critical-layer absorption (which, again, are logical consequences of one another) 
correspond well with the observations. 

It is necessary, then, to reject mathematical models, however ingenious, which 
lead to a turning-point analysis typical of classical waveguide resonance. For example, 
the models of Cole & Chadwick (1977) based on a tapered-elastic-plate representation 
of the basilar membrane can be quickly seen to  be unacceptable on these grounds; 
perhaps most quickly of all, by noticing that the solution’s representation involves 
the Airy function; or else, more physically, by noticing that it exhibits all the three 
properties listed above. I n  particular, their solution (2-3) involves standing waves 
rather than travelling waves. Indeed, both this and the other two properties are well 
illustrated in the experiments on an associated physical model given in their figure 7, 
which shows the wavelength increasing (wavenumber decreasing) as resonance is 
approached; and, also, demonstrates that no waves of frequencies below the resonant 
frequency a t  a point can reach that point. 

It may also be noted that, in the paper where Steele (1974) developed the first truly 
three-dimensional models of the cochlea (his models I and 2 ) ,  he preceded his account 
of these by describing a crude model which he called ‘model zero ’. Steele’s model zero, 
however, must be rejected as conipletely unacceptable because it too leads to a 
turning-point representation characteristic of classical waveguide resonance. 

By contrast, the necessary feature, here called critical-layer absorption, is exhibited 
in quite a substantial group of models. This includes representatives of one-, two- and 
three-dimensional models. 

5.  One-dimensional models without resonance 
I n  a one-dimensional model each cross-section of the cochlea has p (the pressure 

deviation from its mean value P over the cross-section) taking a uniform value right 
across the scala vestibuli; and another uniform value of opposite sign right across 
the scala tympani. That difference of pressure then produces a movement of the 
cochlear partition determined by its stiffness and inertia (together with any damping 
which the model may include). 

All analyses suggest that, near the base of the cochlea, the stiffness is so large that 
it dominates over other mechanical properties of the partition (inertia and damping); 
and, also, that  it forces the local pressure distribution near the base to  be one- 
dimensional. I n  fact, a very early one-dimensional model of the cochlea (Zwislocki 
1948) was stiffness-dominated. Consequentially, this model remains of great value 
in a region close to the base. Admittedly, the extent of that region becomes less as 
the frequency increases. On the other hand, a t  relatively low frequencies, the Zwislocki 
model is shown in appendix C to  be especially helpful for suggesting how the cochlear 
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impedance to the motions of the stapes footplate is reduced (as frequency falls) from 
the typically well-matched value that it takes around 1 kHz or more. 

Equally, as Steele & Taber (1979a,  b )  pointed out, the Zwislocki model a t  low fre- 
quencies exhibits an important change of character with respect to energy flow. At 
these frequencies, in fact, a travelling wave’s essential characteristic (that fluid flow is 
in phase with excess pressure, giving one-way energy flow) is violated very near the 
base. Substantial components of fluid motion in quadrature with excess pressure are, 
indeed, necessarily present in that very limited ‘ near-field ’ region. Locally, these give 
the motion characteristics intermediate between a travelling wave and a standing 
wave (appendix C). 

Beyond that limited region, however, the motion takes a pure travelling-wave form 
which, as Steele & Taber (1979a,  b )  emphasize, closely satisfies the convenient 
approximate rules that  mathematicians and physicists call WKB. Physically, these 
mean that at each point energy travels at the above-mentioned group velocity (slope 
of the frequency-wavenumber plot calculated from the local properties of the system). 
Steele and Taber go on to show that the above-mentioned small ‘near-field’ region 
close to the base (which is only present a t  all for frequencies below about 1 kHz) is 
actually the only cochlear region where the WKB approximation is inappropriate. 
By contrast, those regions (farther from the base) where higher-dimensional models 
are required for good accuracy turn out to satisfy the WKB approximation rather 
closely. This is fortunate because three-dimensional models, in particular, would be 
difficult to  implement if the WKB approximation were unavailable. It is also fortunate 
that, in the one limited region where the WKB approximation cannot be used, the 
motions are necessarily one-dimensional and can be readily described by the Zwislocki 
model (appendix C). 

This model may also be a useful representation of the response of the whole cochlea 
to frequencies so extremely low that basilar-membrane vibration remains substantial 
all the way to  the helicotrema. These are frequencies for which no true resonance 
occurs a t  any point. At these frequencies, a ‘boundary condition’ on p is needed to 
represent the fluid mechanics of the helicotrema. This application of the Zwislocki 
model is given in appendix C, which indicates how a transition from a travelling-wave 
to a standing-wave type of vibration, with the possibility of a rather special type of 
resonance, may occur as the frequency falls to  these very low values. 

At all higher frequencies than those, however, the Zwislocki model fails as a model 
of the cochlea as a whole. I n  fact, at a n y  given point of the cochlea, it is useful only for 
frequencies well below the characteristic frequency. To see this, note that the model 
involves no possibility of any resonance being available to  define such a characteristic 
frequency, although our earlier discussion suggested that the data can be explained 
only in terms of a lightly damped resonant system. A still more direct conflict with 
the data is that  a t  each point the Zwislocki model makes the frequency-wavenumber 
plot a straight line through the origin. I n  other words, the model exhibits none of the 
‘dispersion ’ (wave velocity and group velocity varying with wavenumber) shown in 
more than one way to be present (appendix B) from the data of Rhode (1971) and 
others. 

I n  fact, Zwislocki’s model involves no possibility of normal cochlear-partition 
resonance because it allows no inertial component in the response of the cochlear 
partition. Under these circumstances, Zwislocki was able to calculate reasonable 
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values of characteristic frequency only by assuming large damping. This led to a 
broad frequency response above as well as below the characteristic frequency. Such 
a feature could still be defended much later by Zwislocki (1965) as compatible with 
the data, but can no longer be so defended. 

6. One-dimensional models with resonance 
Peterson & Bogert ( 1950) first produced a one-dimensional travelling-wave model 

of the cochlea which was able to admit resonance, by supposing the response of the 
cochlear partition to  include an inertial component. Accordingly, their model was the 
first to  demonstrate critical-layer absorption. I n  consequence (as noted in 5 1 above) 
it foreshadowed the true asymmetry of frequency response (with a steep fall above, 
but not below, the characteristic frequency) two decades before i t  was observed. 

Peterson & Bogert (1950) were also innovative in their treatment of the cochlear 
partition’s stiffness. The type of stiffness which needs to be incorporated in all one- 
dimensional (and most other) models of the cochlea can be described as a volumetric 
stiffness; defined as the ratio 

pressure difference across the cochlear partition 
(1) resulting volume displacement of the partition per unit length * 

Rather naturally, Zwislocki ( 1  948) used for his model the direct measurements of this 
quantity which BBkBsy (1941) had made and which are reproduced in BBk6sy (1960), 
figure 11-73. These measurements of volumetric stiffness vary by just two orders 
of magnitude along the length of the cochlea. 

The existence of these volumetric stiffness data (even though, as we shall see, 
BBk6sy’s method of measurement is seriously unsatisfactory in two important ways) 
has always been one of the main embarrassments facing a resonance interpretation 
of cochlear mechanics, for two reasons. First, only a much more modest variation in 
the corresponding inertia can be reasonably expected. If so, then the resonant fre- 
quency wr, with its classic form rffness)L inertia ’ 

could hardly vary by more than one order of magnitude along the length of the cochlea. 
This would be insufficient to explain data suggesting that characteristic frequencies 
vary by about two orders of magnitude. 

By contrast, in a model like Zwislocki’s that allows a travelling wave to reach its 
peak where stiffness and a large uniform damping are locally balanced, the character- 
istic frequency should vary along the cochlea by about the same factor as the stiffness 
itself (not its square root). I n  fact, the data derived by Greenwood (1961)) on charac- 
teristic frequency in the six mammalian species on which BBk6sy had used his method 
of measuring volumetric stiffness, support rather well this prediction of direct propor- 
tionality. A few years later, therefore, Zwislocki (1965) could still claim that his type 
of model gave the best account of the available data. 

To justify the rejection of this type of model in favour of a lightly damped travelling- 
wave model with resonance, then, we must not only point to the more recent measure- 
ments of basilar-membrane vibration as excluding models with heavy damping, but 

(2) 
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give also clear reasons for accepting the results of these recent measurements while 
rejecting the volumetric-stiffness measurements of B6kBsy (1941). I n  fact, we are 
influenced to  accept the results of Rhode (1971), for example, by the many checks on 
the internal consistency of those results which have been made by Zweig (1976); 
also, some more checks are made in appendix B; finally,. the same technique used in 
other laboratories like that of Gunderson et al. (1978) led to closely comparable 
results. By contrast, the method of measuring volumetric stiffness used by BBkBsy 
(1941) gave results which are in conflict with later data which he himself obtained by 
a different method (BBkBsy 1947). 

The method by which these later data, reproduced by BQkBsy (19GO), pp. 466-9, 
were acquired now seems more reliable because local elastic properties of the basilar 
membrane itself were measured. A known force was applied a t  various points of the 
membrane by means of a fine hair, and the resulting local depth of depression deter- 
mined microscopically. Peterson & Bogert ( 1950) already relied entirely on these 
measurements to  estimate the stiffness of the cochlear partition, which BBkBsy had 
found to be dominated by that of the basilar membrane. They inferred, as also did 
Fletcher (1951)) a stiffness varying by at  least three orders of magnitude along the 
length of the cochlea.? For a theory such as theirs involving resonance such an in- 
creased variation in stiffness was, of course, essential. 

By contrast, BBkBsy’s direct measurement of volumetric stiffness had been suspect 
for two reasons: 

(i) the excess pressure applied in the scala vestibuli (with the helicotrema blocked) 
was far too large in relation to  any pressure differences occurring normally in the 
cochlea (it was, indeed, enough to  produce a displacement of about 0.01 mm at  the 
point of observation; which required pressure differences from 1 cm of water a t  the 
apex to 100 cm a t  the base); 

(ii) the measurement of volume displacement was made on Reissner’s membrane 
rather than on the basilar membrane itself; whereas the volumetric displacements of 
Reissner’s membrane and the basilar membrane need not be the same if the applied 
pressure difference produces displacement of endolymph in the scala media. 

To sum up, the principal data (BQkBsy 1941) which would tend to make a critical- 
layer resonance theory (of the type first set out by Peterson & Bogert (1950)) un- 
tenable are not only in contradiction t o  BQkBsy’s own later data but also open to grave 
objections with regard to  the experimental methods used. 

Two decades later, the special importance of Peterson and Bogert’s contribution 
was pointed out by Schroeder (1973) and Zweig (1976), who showed how their one- 
dimensiofial travelling-wave model with resonance, if only lightly damped, would 
exhibit features close to those which Rhode (1971) had measured, both as regards 
amplitude and phase. At the same time, they made the model much easier to use. 
Briefly, they noticed that, if the WKB approximation were made, and if also the 
relatively modest variation in fluid cross-sectional area along the length of the cochlea 
were neglected, then a simple analytic solution of the equation for p could be found, 
in pIace of the cumbersome numerical solution of Peterson & Bogert (1950). This 
analytical solution enabled them to work out simple forms for many interesting 
quantities. I n  particular, Schroeder’s solution for the cochlea’s transient response can 

7 Later, more detailed analysis of the Bkkesy data using hairs, by Steele (1976) and others, 
indicates a stiffness variation by about four orders of magnitude. 
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FIGURE 2. Reconstruction by Zweig (1976) of the tmvelling waves on a squirrel monkey’s 
basilar membrane excited by a pure tone of 70 dB amplitude at  2 kHz. (The displacement curve 
for the travelling wave is shown a t  one instant of time; the envelope of the travelling wave is 
also given.) This reconstruction is computed from the measurements of amplitude and phase 
by Rhode ( 1 9 7 1 ) .  The assumption used to interpolate between Rhode’s measurements at  difforent 
points of the membrane is that phase is a function of w/w,  (see 5 10 for a further discussion 
of this assumption). For the sake of clarity, the vertical scale is enormously enlarged (the ob- 
served maximum amplitude of vibration was around mm). 

be regarded (appendix C) as having, essentially, predicted experimental results like 
those of Robles et al. (1976) already referred to. 

Use of the WKB approximation in Schroeder’s solution is acceptable, as noted 
earlier, for frequencies over 1 kHz. Furthermore, it should be usable also a t  lower 
frequencies except in a short region near the base where it can be replaced by the 
Zwislocki solution (with which i t  matches well). 

Zweig (1976) emphasized the effectiveness (in the above sense) of the WKB appro- 
ximation (see also Zweig et al. (1976)) and the utility of the associated solution for 
explaining the data of Rhode (1971). He also checked that the phase and amplitude 
measurements of Rhode were consistent with the general properties of causal linear 
systems. Furthermore, he combined Rhode’s experimental data on phase and ampli- 
tude a t  two positions on the basilar membrane wit’h an empirical formula allowing 
interpolation between them to construct remarkable diagrams of the basilar-membrane 
displacement curve (his figures 6 and 7, the second of which is here reproduced as figure 
2 ) .  These give a very strong impression of how critical-layer absorption works: as the 
energy flow slows down ahead of the resonant point there is a piling-up of the energy, 
after which all the dissipation occurs in a very short final distance (which, however, 
in energy-flow terms corresponds to a very long final time). 



Energy pow in the cochlea 163 

7. Two-dimensional models 
A principal motive for giving the above rather full review of the literature on one- 

dimensional models of cochlear mechanics has been to explain wny a ‘good’ one- 
dimensional model, such as that of Schroeder (1973) and Zweig (1976), reflects so 
accurately the main observed features of basilar-membrane motion in spite of its 
gross over-simplification of the fluid mechanics. The reason is that  a ‘good’ one- 
dimensional model can and does exhibit the essential property of critical-layer 
absorption. A model with this property, and with values chosen for the inertia and 
stiffness of the cochlear partition which give a realistic distribution of characteristic 
frequency along the cochlea, has a good chance of representing basilar-membrane 
motions quite well. 

Nevertheless, there is no exaggeration in describing a one-dimensional representa- 
tion of cochlear fluid mechanics as a gross over-simplification. The physical laws 
governing fluid motion in an elongated duct, such as the scala vestibuli (or scala 
tympani), are well known. The associated conditions governing whether or not such 
motion is effectively one-dimensional when excited by vibrations on just one boundary 
of the duct (that is, vibrations of the cochlear partition) are also well established (see, 
for example, Lighthill 1978). For one-dimensional motions the wavenumber k must 
be less than an upper limit which depends only on the dimensions of the duct cross- 
section, and is about 0.7 mm-1 for a human cochlea (appendix D). Waves with wave- 
number exceeding this upper limit involve fluid disturbances (including both motions 
and excess pressures) that  are stronger near the vibrating boundary than elsewhere. 
Then, as the wavenumber k increases still further, the Auid disturbances become 
essentially limited to a smaller and smaller neighbourhood (of depth k-l) around the 
vibrating partition. 

These well-established properties of waves in fluids have one very clear implication 
for mathematical models of cochlear mechanics. Such models, if they are to be effective, 
must exhibit critical-layer absorption ($4), which in turn means that the wavenumber 
k a t  a fixed point must become large as the characteristic frequency is approached. 
Evidently, for the human cochlea, once k exceeds 0.7 mm-l, the assumption of one- 
dimensional fluid motion becomes seriously inaccurate. 

Note, however, that  the WKB approximation is good whenever k exceeds 0.2 mm-1 
(appendix C). Accordingly, in the only region (k < 0.2 mm-l) where the WKB 
approximation is unsuitable, we are free to  use a one-dimensional model (in practice, 
that  of Zwislocki as in appendix C). Conversely, at wavenumbers k > 0.2 mm-l the 
WKR approximation becomes accurate, but a t  wavenumbers k > 0.7 mm-1 it must 
be combined with a treatment in two or three dimensions. 

Until these facts were recognized, notably by Steele (1974, 1976), attempts to 
produce mathematical models of cochlear mechanics in more than one dimension had 
been somewhat unenlightening. That was because the difficulties of mathematical 
analysis could be overcome only if the models were made geometrically very simple. 
Even then, the still very intricate analysis allowed no clear physical interpretation 
which could give guidance on how well the conclusions would apply in a cochlea of 
realistic geometry. 

To this day, in fact, the only models avoiding the WKB approximation which go 
beyond a one-dimensional treatment have been purely two-dimensional models for 
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ducts of uniform rectangular cross-section. The assumption of two-dimensional 
motion, of course, ignores the fact that the vibrating basilar membrane occupies only 
part of the cochlear partition. It supposes the whole width of the cochlear partition 
to  vibrate with uniform amplitude. These are severe limitations. Nevertheless, two- 
dimensional models based on them, developed by Lesser & Berkley (1972) and 
perfected by Allen (1977) ,  are able to  exhibit many realistic features. These include 
a transition from a one-dimensional travelling-wave motion near the base, with all 
the perilymph in a cross-section of a scala moving as one, to a wave of much higher 
wavenumber with the fluid motion confined to  a neighbourhood of the vibrating 
membrane. 

Two-dimensional models were pioneered in the much earlier work of Ranke (1950), 
whose oversimplified analysis, however, is applicable only after that  transition has 
been completed. A modern form of Ranke’s treatment (Siebert 1974) is still too 
complicated to allow of clear physical interpretation, and so has no advantage over 
the rigorous two-dimensional analysis of Allen (1977); see also de Boer (1979) and 
Viergever ( 1  980). 

Just  as the best one-dimensional models (Schroeder 1973; Zweig 1976) reproduce 
the essential features of basilar-membrane response at  moderate stimulus levels, so 
does the best available two-dimensional model (Allen 1977) .  Steele & Taber ( 1 9 7 9 ~ )  
took an important first step towards understanding physically why this is. They 
pointed out that  in the Allen model all the conditions for applicability of the WKB 
approximation are amply satisfied, and went on to verify that a quite straightforward 
analysis of Allen’s model using that approximation gives results in good agreement 
with Allen’s. 

From the energy-flow standpoint, this WKB approximation states that the energy 
of the wave travels a t  the group velocity given by the slope of the frequency-wave- 
number plot. The type of plot needed for critical-layer absorption (figure 16) requires 
the frequency a t  each position to  rise towards the local resonant frequency as the 
wavenumber becomes large. By a simple extension of the classical formula (2) for 
that  local resonant frequency, we can readily understand why both one-dimensional 
and two-dimensional models can exhibit this behaviour. 

Physics tells us, in fact, that  the simple formula (2) relating frequency to stiffness 
and inertia remains correct even for complicated modes of vibration, provided that 
(i) the stiffness includes all contributions from forces tending to restore the system 
to its undisturbed state; and (ii) the inertia includes all contributions from masses 
which have to be set in motion to  allow the system to change its state. Furthermore, 
in both cases i t  is contributions to  energy that  are relevant (potential energy for the 
restoring forces and kinetic energy for the masses) for defining the stiffness and inertia. 
Whatever measure of departure from the undisturbed state is used (such a measure is 
most commonly called ‘generalized co-ordinate ’ in vibration theory) these definitions 
are as follows: 

(3) 

(4) 

where the generalized velocity of the system is the rate of change of generalized co- 
ordinate. For duct flows as in the cochlea, the energies in (3) and (4) should be taken 
as energies per unit length of duct. 

potential energy = *(stiffness) (generalized co-ordinate)2; 

kinetic energy = +(inertia) (generalized velocity)2; 
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FIGURE 3. Fluid inertia divided by fluid density, plotted against I d  for one-dimensional (1D) 
and two-dimensional (2D) models. Here, k is wavenumber and I is the height of a scala, assumed 
to be half its breadth. The 1D curve is simply the graph of (kZ)-2. The 2D curve (broken line, 
representing a simple function I(kZ) defined in appendix D) talscs this form for Id less than about 
0.5, but for larger values of kZ moves over to coincide with the graph of ( k l ) - l .  Corresponding 
curves for 3D models ( 5 9 and appendix E) make a broadly similar transition between the 
( / C Z ) - ~  curve for small kZ and a form proportional to ( k l ) - l  for large kl. [For a different assumed 
ratio of scala height 1 to half-breadth, t,he curves marked 1D and 2D must simply bc scaled 
up by that ratio.] 

The volumetric stiffness used in one-dimensional models satisfies (3) if the ‘generalized 
co-ordinate ’ used to measure departures from the undisturbed state is the volume 
change in a scala (say, the scala tympani) per unit length of duct. This stores apotential 
energy equal to the volume change times half the opposing pressure difference (half 
so as to give the average of the opposing pressure difference as the volume change rose 
from zero to its present value). Then (3) makes the stiffness equal to the volumetric 
stiffness defined in ( I ) .  

It remains satisfactory to use the same generalized co-ordinate in two-dimensional 
models; and, then, the stiffness defined in (3)  continues to be the volumetric stiffness 
(I) .  However, the inertia defined in (4) becomes a sum of two terms: the corresponding 
inertia of the cochlear partition itself (used in (2) to specify the resonant frequency) 
and the inertia associated with the fluid motions. Thus, we can write the local radian 
frequency w as 

(5) 
volumetric stiffness 

w =  ( 
partition inertia + fluid inertia 
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FIGURE 4. ( a )  Motion of particlcs of fluid predicted by two-dimensional models when a locally 
sinusoidal wave wit,h relatively large values of kl (product of wavenumber and height of a 
seala) propagates from loft to right along the cochlear partition. Each circular particle path is 
followed clockwise in the lower scala and anticlockwise in the upper scala. The particle's instan- 
taneous position on each path is shown. ( b )  The upper diagram shows the fluid motion predicted 
by two-dimensional models when a locally sinusoidal wave with relatively small values of kl 
propagates along the cochlear partition (same notation as in (a ) ) .  The lower diagram plots the 
volume flow of fluid to the right in the upper scala, of breadth B and height 1 ,  with velocity 
amplitude uo. The transverse velocity of the membrane must reach its maximum value, klu,, 
where the gradient of this volume flow takes its maximum value, klBu,. [In both (a )  and (b) ,  
of course, amplitudes of motion are enormously exaggerated for the sake of clarity.] 

(+klBu,) of (-klBua) of 

I n  two-dimensional models the fluid inertia, relating the fluid kinetic energy per 
unit length of duct t o  half the square of the rate of change of scala volume per unit 
length as in (4), is a certain well-known, and analytically simple, function of wave- 
number plotted in figure 3. For values of k exceeding about 2.0 mm-1 (a wavenumber 
derived as 1-5 divided by the height 1 assumed for the rectangular scala) the graph of 
fluid inertia, non-dimensionalized as in figure 3, coincides with the graph of (kZ)-l. 
This is proportional to the effective depth of penetration, k-l, of the disturbances 
into the fluid in that high-wavenumber regime. 

By contrast, for wavenumbers k less than about 0.7 mm-1 (a figure quoted earlier, 
and here specified as 0.51-l) the graph of fluid inertia coincides with that calculated 
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by one-dimensional theory; and, as that  theory would also predict, the associated 
kinetic energy of fluid fills the duct almost uniformly. At first sight this last circum- 
stance might be supposed to lead to  a fluid inertia independent of k ;  but this supposition 
would be seriously in error, for a reason which must be explained. 

For k > 1.51-1 the fluid motions (figure 4a)  are effectively limited to  a region 
within a distance k-l of the vibrating partition. (This is less than the height 1 of the 
scala.) Furthermore, individual particles of fluid in that region have equal amounts 
of kinetic energy in their longitudinal motions (along the duct) and their transverse 
motions (in the plane of the cross-section). Now, the generalized velocity (rate of 
change of scala volume per unit length) is equal in two-dimensional models to the 
duct breadth B times the transverse fluid velocity at the vibrating partition. The total 
kinetic energy is twice the kinetic energy in transverse motions only, and this is 
related to  the transverse velocity squared multiplied by the extent k-I of the distur- 
bances. It is not surprising, therefore, that  the fluid inertia defined by (4) takes the 
form of a multiple of k- l .  

By contrast, the one-dimensional motions occurring for k < 0.51-l are almost 
purely longitudinal (figure 4 b ) .  Nevertheless, a t  the partitior, itself, the ratio of trans- 
verse to longitudinal velocity amplitudes cannot be zero, but must take the (admitted- 
ly, relatively small) value kl. This is because oscillating longitudinal velocities with 
wavenumber k imply oscillating gradients in $uid volume $ow, of amplitude kl times 
the velocity amplitude times the duct breadth. Such gradients in volume flow are in 
turn possible, of course, only as a result of volume displacements of the partition; in 
fact, dividing them by the duct breadth gives the amplitude of the transverse velocity 
a t  the partition. 

Relative to  the generalized velocity, then, the velocity amplitude of the main 
longitudinal disturbances is greater by a factor (k1)-1; accordingly, the associated 
kinetic energy involves this factor squared. That explains why the fluid inertia makes 
a transition (figure 3) from its (kZ)-I dependence for large kl to  a (k l ) -2  dependence for 
small kZ. 

8. Comparison of different models 

rather precisely defined by: 
The class of mathematical models which can exhibit critical-layer absorption is 

(i) figure 1 ( b )  showing the required behaviour of the frequency-wavenumber plot; 
(ii) equation (5) relating frequency to stiffness and two kinds of inertia; 
(iii) figure 3 showing the dependence of fluid inertia on wavenumber; 
(iv) the fact that  partition inertia, for a given mode of vibration of the partition, 

must be independent of wavenumber. 
Models with this partition inertia neglected were abandoned (sections 5 and 6) as 

incapable of defining a resonant frequency (2).  We divide the remaining models into 
( a )  those with the volumetric stiffness independent of wavenumber; and 
( b )  the rest. 
The wide class (a ) ,  of models with stiffness independent of wavenumber, is imme- 

diately seen by (ii), (iii) and (iv) above to produce a wavenumber plot of the type ( i )  
characteristic of critical-layer absorption for both one-dimensional and two-dimen- 
sional models. I n  fact, as k becomes large, the total inertia in the denominator of (5) 
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FIGURE 5 .  Explaining the failure of models which take into account longitudinal stiffness. 
Plain line: behaviour of the frequency ( 5 )  if the volumetric stiffness (1) is independent of k ,  
while the fluid inertia tends to zero with increasing k as in figure 3. Broken line: changed beha- 
viour of the frequency (5) if the volumetric stiffness ( 1 )  contains increasing terms (proportional 
to k* and k*) associated with longitudinal stiffness. The slope U of this line (group velocity at  
which the wave transmits energy) no longer decreases to zero, so that critical-layer absorption 
is impossible. 

is gradually reduced to the partition inertia, so that the frequency (5) rises to become 
equal to the resonant frequency (2). 

This makes it clear why both one-dimensional and two-dimensional models meet 
the central requirement of critical-layer absorption provided that the volumetric 
stiffness (1) is independent of wavenumber. I n  fact, differences between the predic- 
tions of such models involve subtler (albeit significant) features, which depend (see 
below) on different results of a ‘fast) (like (k l ) -2)  or ‘slow’ (like (kl)-l) rise to the 
resonant frequency. 

I n  the meantime, it has to be noted categorically that models in class (b ) ,  with stiff- 
ness dependent on wavenumber, are incapable of exhibiting critical-layer absorption. 
This is one of the most important conclusions of the present analysis and therefore 
demands a full explanation. 

The point is that the theory of elasticity clearly defines any dependence of the volu- 
metric stiffness (1) on the wavenumber k as taking the form of an increase as k becomes 
large. The value of (1) when k is small can be described as the transverse stiffness, 
associated with deformations of the partition which are almost in phase a t  neigh- 
bouring stations so that the elastic potential energy is associated only with trans- 
verse, and not with longitudinal, bending. To that transverse stiffness may be added 
(as k increases) terms in k2 and k4 associated both with any longitudinal tension in the 
membrane and with any longitudinal bending stiffness. No doubt the presence of 
longitudinal stiffness terms, involving additions to the potential energy as the longi- 
tudinal waviness of the basilar membrane increases, is to be expected. Nevertheless, 
the mathematical models that represent cochlear vibrations most successfully are 
those that allow no such increase of stiffness with wavenumber, and the present 
analysis shows clearly why that is, as follows. 

I n  fact, the frequency-wavenumber plot can take the form shown in figure 1 ( b )  as 
necessary for critical-layer absorption provided that the stiffness does not increase as 
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k becomes large. Only then will the frequency (5 )  tend to  a well-defined resonant 
frequency as the fluid inertia tends to zero for large k. By contrast, if simultaneously 
the stiffness is increasing, the plot will curve upwards (figure 5 )  and fail to show many 
essential features such as high-frequency cutoff and continued slowing down of energy 
flow. 

The original paper of Huxley (1969)’ that  suggested a combination of travelling- 
wave and resonance theories, recognized the above difficulty (that natural assumptions 
about longitudinal stiffness can destroy the possibility of resonance) but suggested 
that the elastic stress system of the basilar membrane may be more complicated than 
that in a classical ‘elastic plate’.? Certainly, the natural tendency of stiffness to 
increase with k would be greatly reduced if the membrane as held by the bony shelf 
and the spiral ligament were subject to  a longitudinal thrust (negative tension). Such 
a longitudinal thrust along the length of the cochlea would produce a reduction in 
potential energy with increasing k that  could largely cancel the increase due to longi- 
tudinal bending stiffness (at least for practically interesting values of k, a t  which the 
main critical-layer absorption process is occurring). Yet another possible explanation 
of why transverse stiffness may greatly exceed longitudinal stiffness in significance is 
to be found in the suggestions of Steele (1974, 1976) on the important contribution to 
transverse stiffness made by the properties of the ‘hinge’ where the basilar membrane 
is attached to  the bony shelf via the arch of Corti. 

To sum up, an effective mathematical model of cochlear mechanics requires that 
both the stiffness and the inertia of the cochlear partition are effectively independent 
of wavenumber so that they define a resonant frequency (2). At the same time, its 
other requirement, of a fluid inertia tending to  zero as wavenumber increases, is 
satisfied both by a one-dimensional, and by a two-dimensional model (figure 3). On 
the other hand, the assumptions underlying a one-dimensional model are certainly 
violated once the wavenumber k exceeds quite a modest value around 0.7 mm-1. 

Actually, a mathematical model needs to satisfy two requirements if i t  is to lead 
to valuable understanding of cochlear mechanics. First, the model must fulfil the 
conditions for critical-layer absorption so that its conclusions will not contradict the 
results of observations of basilar-membrane vibration a t  moderate stimulus levels. 
Secondly, the model must avoid contradicting other well-established facts. It is on 
that basis that  one-dimensional models must be discarded. Furthermore, this will 
prove significant for defining the detailed nature of the critical-layer absorption in 
the cochlea because of differences in the implications of a fluid inertia tending to zero 
‘fast’ (like (kl)-2 as in one-dimensional theory) or ‘slow’ (like (k l ) - l ) .  

9. Three-dimensional models 
Continuing to apply, as it were, such a ‘second filter’ to the available mathematical 

models, it is perhaps logical to  reject also two-dimensional models. That is because 
they unrealistically assume fluid velocities which vary only with distance from the 

t The experimental evidence accumulated by BBkesy (1960) suggesting such an ‘elastic 
plate’ model was, of course, obtained in cadavers; but comparisons (Rhode 1973;  Kohlloffel 
1973)  of basilar-membrane stiffness properties in the same animal before and after death showed 
significant changes. Much more recently, the work of Voldrich (1978)  has confirmed experi- 
mentally that the basilar membrane i n  oivo has negligible longitudinal stiffness ; and, also, has 
shown that longitudinal stiffness quickly becomes significant after death. 
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cochlear partition. Actually, variation across the width of that  partition is likely to 
be very pronounced. For example, fluid close to the basilar membrane is likely to 
move much more than fluid near the bony shelf; while, over the membrane itself, a 
maximum disturbance towards its centre is to be expected. 

Fortunately, the work of Steele (1974, 1976) shows clearly that a far more realistic 
three-dimensional model is relatively easy to construct if the WKB approximation 
is used (see also Steele & Taber 1979b). I n  that context, the accurate work of Allen 
(1977) on a two-dimensional model gains importance from its use by Steele & Taber 
( 1 9 7 9 ~ )  to  demonstrate how well the WKB approximation reproduces accurate data 
for a problem where those are known. 

I n  the present paper's language, Steele effectively calculated the fluid inertia for 
a three-dimensional model (see appendix E). On the whole, a model using this cal- 
culated value for fluid inertia, together with distributions of partition inertia and 
stiffness along the cochlea which are independent of wavenumber, seems to combine 
best the essential requirement for critical-layer absorption with a demand for maxi- 
mum realism within that limitation. 

As would be expected, the Steele calculation of fluid inertia shows some variation, 
not only with kl as in figure 3, but also with another parameter which varies along the 
cochlea. This is the proportion of the breadth of the cochlea taken up by the basilar 
membrane. Nevertheless, though the curves for different values of that  parameter are 
different (appendix E), they do all share the property highlighted in figure 3; that is, 
they make a transition from behaviour like for small kl to behaviour in propor- 
tion to (kZ)-l for large kl (and, essentially, for the same physical reasons). 

The preferred three-dimensional type of model, then, shares with two-dimensional 
models this property of a relatively slower decay of the fluid inertia to zero (as k 
becomes large) than one-dimensional models would suggest. Consequently, although 
all three types of model satisfy the main requirement (prediction of critical-layer 
absorption) there are various local differences of some significance between one- 
dimensional and multi-dimensional models in the type of behaviour predicted near 
the critical layer. 

First, a multi-dimensional model allows a more rapid growth of wavenumber k as 
a wave of given frequency w approaches the point where w coincides with the resonant 
frequency 0,. I n  fact (appendix E), k varies as (w, - w)-'. 

Already this partly explains the accuracy of the WKB approximation because it 
allows the growth of wavenumber to  keep pace (as that  approximation demands) 
with the relative longitudinal rate of change of uuvenumber. By contrast, the one- 
dimensional models have k varying as ( w r - w ) - i  only, when as Zweig et al. (1976) 
point out the WKB approximation could break down in the case of extremely small 
damping. 

Next, the passage of wave energy of frequency w to a position where the resonant 
frequency is w, takes a time increasing like (0, - w)-l for the multi-dimensional models, 
but (just as with k )  only like (w, - w ) - i  for one-dimensional models. I n  this respect, 
also, the multi-dimensional models are rather better adapted to work satisfactorily 
(giving massive energy absorption in that quite long time) with only light damping. 

Lastly, the build-up of basilar-membrane vibration amplitude, before damping 
becomes significant, is predicted as proportional to (w, - wf-l on the multi-dimensional 
theories. This, too, seems a satisfactory representation of the observed data (appendix 
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E), although the difference from one-dimensional models (which predict (w, - w ) - f )  
is less marked on this point. 

Within the class of multi-dimensional models, the fully three-dimensional models 
possess one special feature, which has definite interest and is demonstrated a t  the end 
of appendix E. They tend to show a certain anticipatory slowing down of energy 
propagation to occur as a forerunner of its final bringing to a halt a t  the point of 
resonance. 

10. Conclusions for frequencies a little below the characteristic frequency 
The suggestion that realistic three-dimensional models of a type allowing critical- 

layer absorption may be specially good accounts of the amplitude and phase data 
near resonance is encouraging. With that background, it may be desirable to indicate 
in more detail the predicted behaviour on the immediate low-frequency side of the 
characteristic frequency. That is the region where loudness discrimination between 
two rather loud pure tones of the same frequency may possibly originate (Laming 
1979); this possibility assumes that, for loud pure tones, neurones associated with 
the site where their frequency is the characteristic frequency may be saturated. 
That would put the burden of discrimination on neurones associated with sites where 
the tones' frequency is close to, but on the low-frequency side of, the characteristic 
frequency. 

In  this region, the analysis of appendix E suggests that a number of significant 
properties of the basilar-membrane vibration depend on the ratio w / w ,  of the vibra- 
tion's frequency w to the local resonant frequency wr. It is interesting that Zweig 
(1976) proposed such a dependence on w/wr for various quantities (especially, the 
phase) as a reasonable basis for interpolation between the patchily available experi- 
mental data. This is the basis on which figure 2 was built up by Zweig from the experi- 
mental data of Rhode (1971). That assumption is now seen to be valid for a three- 
dimensional model as well as for models of the one-dimensional type described in 
another part of Zweig's paper. 

Figure 6 shows how key variables are predicted to behave a t  a point as a function 
of w/wr on the immediate low-frequency side of the resonant frequency w,. The graph 
marked (a ) ,  representing 

(W/Wr)2/[' - ( ~ / w r ) ~ I ,  

indicates the predicted behaviour of both the number of wave periods taken for energy 
of frequency w to reach the point and the wavenumber lc associated with that energy 
(each, of course, on an appropriate scale). Similarly, the graph nmrked (b) ,  representing 

In [I  - ( o / ~ r ) ~ I ,  (7 )  

describes the behaviour of the phase on an appropriate scale. 
Finally, the graph marked ( c ) ,  representing 

on a logarithmic scale, indicates the behaviour of the ' amplitude intensification 
factor ' near resonance. Such an amplitude intensification factor describes intensifica- 
tion of amplitude relative to what a simple one-dimensional model without resonance 
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FIGURE 6. Results for both two- and three-dimensional models a t  radian frequencies a little 
below the resonant frequency w,. (a )  Graph of expression (6),  representing (each on an appro- 
priate scale) both the number of wave periods taken for energy of frequency w to reach the 
point where the resonant frequency is w, and the wavenumber k associated with that energy. 
( b )  Graph of expression ( 7 ) ,  representing (on an  appropriate scale) the corresponding variation 
of phase. (c) Amplitude intensification (on the decibel scale shown) relative to what a simple 
one-dimensional model without resonance (or damping) would predict. Broken lines: corres- 
ponding curves with three different damping const.ants (in the ratio 1 :2:3) .  [Note that the zero 
line shown is relevant only to graph (a).] 

(the Zwislocki model of 5 5 or appendix C, but with damping omitted) would produce.? 
Broken lines indicate modifications of this graph which result if wave energy is taken 
to  be dissipated at various rates with respect to  time (as given by graph (a ) ) .  Three 
different proportional rates of dissipation are used. 

To give a final summing up, considerations of energy flow in the cochlea force the 
analyst to adopt a mathematical model with critical-layer absorption. One-dimen- 

t At frequencies abovo about 1 kHz, this is tho familiar gain of 0 dB/octave. 
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sional models are seriously deficient near the characteristic frequency. Two-dimen- 
sionaI models make use of unrealistic assumptions but are valuable for two reasons. 
First, they allow an excellent check that the WKB approximation has good accuracy. 
Secondly, a much more realistic three-dimensional model analysed according to WKB 
approximation gives, in the important region of frequencies just below the charac- 
teristic frequency, results (summarized in figure 6) which coincide with those of a 
two-dimensional model. Anomalous features in the loudness discrimination of pure 
tones, often described as the ‘near-miss to Weber’s law), have recently been analysed 
in the light of the above conclusions by Laming (1979). 

I am most grateful to Dr E. de Boer, Dr R. MacKay, Dr C. R. Steele and Dr G. 
Zweig for their great kindness in giving me extremely valuable suggestions and 
comments on my work. In  addition, my warmest thanks are due to Dr D. R. J. Laming 
for the exceptionally extensive help and advice which he so patiently gave me a t  all 
stages of my investigations in this field. 

Appendix A. Effects of fluid compressibility 
Most mathematical models of cochlear mechanics have neglected the compressibility 

of the cochlear fluids. The work of Peterson & Bogert (1950), however, was a notable 
exception, suggesting that compressibility effects could significantly affect cochlear 
fluid motions at the highest audible, or lowest ultrasonic, frequencies. Their model, 
of course, was strictly one-dimensional. This appendix extends their analysis to multi- 
dimensional models. It indicates that the cochlear response is in two parts, only one 
of which is influenced by compressibility. Furthermore, this part remains one- 
dimensional in character even when the other part (uninfluenced by compressibility) 
has a strongly multi-dimensional distribution. 

We can begin to understand this most readily by recalling how sound would be 
propagated in a cochlea that was devoid of any cochlear partition and was filled 
entirely with perilymph. Then the thick temporal bone could be viewed as effectively 
a rigid boundary since its distensibility is much less than the compressibility of the 
perilymph. Wave motions travelling along such a rigid waveguide are known (see for 
exarrple Lighthill 1978, p. 420) to be purely longitudinal (that is one-dimensional) at  
radian frequencies w below a certain limiting value w,. This is the low-frequency 
cutoff for transverse-mode propagation. The corresponding frequency in hertz, 
f,, = w,/2n, takes the values 

f,, = 0.29co/l or 0.25c0/l (A 1 )  

for a circular cross-section of diameter 21 or a rectangular cross-section of length 21, 
respectively; here, c,, = 1400 m s-l is the speed of sound in perilymph. Evidently, 
with cross-sectional diameters less than 2 mm as in the cochlea the value off, is well 
over 300 kHz. 

At all interesting frequencies, then, the only waves that could propagate along a 
cochlea devoid of any partition and filled with perilymph alone would be one- 
dimensional sound waves. In  these, the pressure is uniform over each cross-section 
of the cochlea, and only varies longitudinally (that is, from base to apex) and with 
time. We shall find that the introduction of a cochlear partition does not suppress 
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these waves. Instead, it allows them t o  be combined with a second group of waves 
whose propagation is uninfluenced by compressibility because for them the mean 
pressure over each cross-section is zero. 

Peterson & Bogert established this fact only for strictly one-dimensional motions; 
that  is, for motions where the pressure takes a uniform value p1 throughout that  part 
of a cross-section which lies on one side of the cochlear partition, and a different 
uniform value p 2  throughout the part which lies on the other side. They found that the 
deduction is made most simply in the case when both those parts are taken to be of 
the same cross-sectional area A ( x ) ;  which, however, may be allowed to  decrease 
gradually as the distance x from the base increases. We reproduce their deduction 
with this simplification retained because differences between cross-sectional areas on 
either side of the cochlear partition appear in general to  be rather small. 

The volume flow of fluid from base to apex is taken t o  be J1 on one side of the cochlear 
partition and J2 on the other. The linearized equations of fluid momentum on the two 
sides become 

poaJl/at = - ~ a p ~ / a x ,  poaJ2/at = -Aap,/ax, (A 2) 

where po is the undisturbed density of the fluid. Here, aJl/at, for example, is equal to 
the cross-sectional area A times the local fluid acceleration, and the first equation 
relates this appropriately to pressure gradient. 

Any spatial downward gradient in volume flow such as ( - aJl/ax) must result from 
a local rate of change of fluid volume associated with either the fluid’s compressibility 
K or the distensibility of the tube. This distensibility, D ,  is defined for a single isolated 
tube as the proportional increase in cross-section area per unit increase in pressure. 
This gives 

- a ~ , / a x  = A(Dapl/at+ii‘apl/at), (A 3) 

as a sum of the rate of increase of tube volume per unit length (that is, of cross-sectional 
area) and a correction for the increasing quantity of fluid which, when the pressure 
is increasing, can be fitted into unit length without any such change in tube volume. 
The combination of equation (A 3) with the first of equations (A 2) gives the well- 
known result (Lighthill 1978, p. 93) that  waves propagate a t  a speed 

depending on the sum of the fluid’s compressibility and the tube’s distensibility. 
Equation (A 3), however, is significantly modified in the case of two adjacent tubes 

that undergo equal and opposite cross-section variations proportional to the difference 
of pressure across the partition between them. If in this case we define D as the pro- 
portional increase in cross-sectional area of either tube per unit excess of the pressure 
in that tube over the pressure in the other, then (A 3) is evidently replaced by the 
following two equations: 
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so that P and J are the cross-sectional mean pressure and volume flow while p and j 
are the departures from the means, then equations (A 2) and (A 5) give 

poaJ/at = - A ap/ax, - a q a x  = AKaP/at (A 7 )  
for the means and 

poaj/at = - ~ a p / a x ,  - aj/ax = A ( K  + 20) aplat (A 8) 

for the departures from the means. I n  other words, P and J satisfy the equations for 
waves travelling a t  the classical sound speed 

co = (poK)-k 

By contrast, p and j satisfy equations which describe waves travelling at  the speed 

c = [po(K+ 2 D ) ] 4 .  (A 10) 

These two speeds replace the single speed (A 4) found in the case of a single duct. 
The slower wave speed (A 10) is enormously lower in the case of the cochlea. I n  fact, 

D exceeds K (even near the base) by such a large factor that  to all intents and purposes 
the speed c of the slow waves is uninfluenced by compressibility and can be writtJen 

c = (2poD)-4. (A 1’) 

The propagation of these slow waves is treated in detail in later appendices. Here, 
we note simply that their speed (A 11) decreases continuously from base to  apex. 
Accordingly, the frequency below which one-dimensional theory gives a good approx- 
imation also decreases from base to apex. 

Actually, for these slow waves we cannot speak of a precise cutoff frequency as with 
(A 1) for sound waves, below which propagation is exactly one-dimensional. Never- 
theless (appendix D), there does exist a frequency proportional to c/l (with (A 11) 
now specifying c) below which departures from one-dimensional propagation are less 
in magnitude than (say) 3 yo. This is important because stimulation of the cochlea at  
frequencies significantly exceeding 100 Hz excites waves which, as they pass from 
base to  apex, ultimately reach a point where this requirement for good accuracy of 
a one-dimensional analysis ceases to be satisfied. 

For these frequencies, then, the assumptions of the above one-dimensional theory 
are invalid beyond a certain point in the cochlea. Fortunately, however, we can make 
a fully three-dimensional analysis which leads to the same conclusions for the propa- 
gation of the cross-sectional mean pressure P; at  the same time, for the departures 
p of the fluid pressure from this cross-sectional mean, it implies a more complicated 
(and fully three-dimensional) propagation behaviour which, however, is yet again 
uninfluenced by fluid compressibility. 

The simplest route to this conclusion is to  write the fluid pressure as P + p ,  where 
(i) both P and p may vary over a cross-section, although we shall in fact find that P 
does not; while (ii) P is an ‘even’, and p an ‘odd’ function; that  is, P takes equal 
values with the same sign, and p equal values with opposite signs, a t  points which are 
mirror images of each other in the cochlear partition. (This definition makes P the 
mean of the pressures a t  the two image points.) 
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Both P and p must satisfy the linearized equation governing small motions of a 
compressible fluid; this is the acoustic wave equation 

a2Plat2 = C: V~P,  (A 12) 

where co is the sound speed (A 9). Both satisfy, also, the condition of zero normal 
derivative at the rigid temporal-bone wall of the cochlea. However, P itself has been 
defined so that it cannot have any discontinuity a t  the cochlear partition, since its 
value on either side of it is evidently the same. This, with (A 12), means that P is 
the solution of the physical problem mentioned a t  the beginning of this appendix: 
acoustics in a cochlea without any partition. We know already that a t  all interesting 
frequencies (certainly, for those less than 300 kHz) the solution P of that problem 
is necessarily uniform across a cochlear cross-section. This makes P simply the average 
pressure over a cross-section (since the other part p of the pressure is an odd function 
and so has zero average). It, and the corresponding volume flow J ,  are governed by 
equations (A 7 ) .  These, with co defined in (1.9), give 

A a2P/at2 = c;(a/ax) ( A  aplax), (A 13) 

the well-known area integral of the acoustic wave equation (A 12). 
The odd part p of the pressure satisfies, as we have seen, the same equation (A 12) 

as P but there are two important differences in its properties. Above all, it is dis- 
continuous across the cochlear partition (the discontinuity in p accounting, in fact, 
for the whole of the pressure discontinuity across the partition). We shall find that 
this leads to  wave speeds c that  are extremely small compared with co whether a one- 
dimensional analysis as above, or a two- or three-dimensional analysis, is used. 

Accordingly, the left-hand side of azp/at2 of the wave equation (A 12) for p is 
completely negligible compared with a typical term on the right-hand side such as 
cia2p/ax2. (In fact, their ratio is as the square of this small ratio of wave speeds.) The 
equation for p reduces, then, to the simpler Laplace equation 

v2p = 0 (A 14) 

describing fluid motions uninfluenced by compressibility. 
Both for one-dimensional and multi-dimensional models, then, we have inferred 

that the departure p from the cross-sectional mean pressure is uninfluenced by com- 
pressibility. I n  other words, it satisfies the equations (neglecting compressibility) 
which have been widely used in the literature to describe the whole pressure field in 
the cochlea. For further analysis of those equations, see later appendices (B and C for 
one-dimensional models, and D and E for multi-dimensional models). 

However, p is not the whole pressure field, which in fact includes also the part P 
satisfying the equation (A 13) of one-dimensional sound waves. This correction is 
particularly significant near the base, where p and P must indeed be almost equal. 
This follows from the fact that, at the base, only the motions in the scala vestibuli 
are forced, by the action of the stapes footplate against the oval window, whereas 
motions in the scala tympani are subject to  no significant forcing. Indeed, the motions 
of the round window are resisted by a medium of such low density (the air of the 
middle ear) that  the resulting pressure fluctuationsp, = P - p  are negligible compared 
with tjhose in the perilymph of the cochlea. 
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Admittedly, p is known to increase steeply with distance from the base (at any 
rate as far as the position of resonance) while (as we shall see) P normally changes 
much more gradually. Nevertheless, a t  the base itself, where the one-dimensional 
expressions (A 6) are applicable, p and P must be closely equal so that p2 ,  the pressure 
fluctuation in the scala tympani, can remain negligibly small. 

By contrast, the relationships between volume flows, which we continue to write 
J + j  and J - j  as in (A 6)) are quite different. This fact, important in the context of 
energyfEow, is just one more consequence of the greatly different speeds of propagation 
of the two signalsp and P. Because wave impedance (ratio of pressure to volume flow) 
is proportionalnot only to the density (a fact just usedin considering the round window) 
but also t o  the wave speed, the ratio P / J  enormously exceeds the ratio p / j .  Accord- 
ingly, J is negligibly small even near the base, where P and p are closely equal. This 
means that to close approximation J1 = +j  and J, = - j  are equal and opposite. I n  
particular, the volume flows generated by motions of the oval and round windows are 
equal and opposite, exactly as if the fluid in the cochlea were incompressible, even 
though the pressure distribution p calculated on incompressible-flow theory falls short 
of the true pressure distribution by the quite significant difference P. 

Energy flow in a tube is the mean product of pressure and volume flow. Thus, in 
the scala vestibuli where the pressure is P + p  and the volume flow + j ,  the energy 
flow is - -  

P j + p j ;  (A 15) 

whereas, in the scala tympani, where the pressure is P - p  and the volume flow -j, 
the energy flow is 

Both expressions include the same term 

- -  
- P j  + p j ,  (A 16) 

signifying energy flow towards the apex in the slow wave, which is necessarily positive 
according to the strongly supported interpretations of that  wave as ;L travelling wave. 

Additionally, expressions (A 15) and (A 16) include first terms 
- 

+q and -Pj (A 18) 

(identical except for sign) associated with interaction between the pressure in the fast 
wave and the volume flow in the slow wave. These terms resolve an undoubted paradox 
in the travelling-wave interpretations; namely, that  the slow-wave energy flow (A 17) 
is as great in the scala tympani, where the motions are unforced, as in the scala vesti- 
buli, where forcing by the stapes footplate acts as a source of energy flow. Indeed, a t  
the base, where p = P, the equal and opposite terms (A 16) imply that the net energy 
flow in the scala tympani is zero, whereas the scala vestibuli transmits an energy flow 
twice as great as i t  would carry in a pure slow wave. Locally, we might say that i t  
takes charge of the other scala’s share as well; although, away from the base, where 
p increases and P decreases, the distribution of energy flow between them becomes 
much more even. 

Figure 7 illustrates the two components (A 18) (broken lines) and (A 1 7 )  (plain 
lines) of energy flow. The travelling-wave energy flow (A 17) ,  equal in both scalae, is 
directed away from the base in both, even though the only energy input is into the 
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I 
FIGURE 7. Energy flow in two adjacent tubes separated by a flexible partition, with forcing a t  
OW (representing oval window) and negligible impedance to the motion of RW (representing 
round window). Broken lines: fast-wave energy flow from OW to RW. Plain lines: slow-wave 
energy flow, equal in amount, travelling away from OW and RW in bot,h tubes. 

scala vestibuli. This is possible because the fast-wave energy flow (A 18), equal and 
opposite in both scalae, carries energy down the scala vestibuli, across the cochlear 
partition, and back up the scala tympani to the round window. The cycle of energy 
flow, totalling what is needed to  feed the travelling wave in the scala tympani, is 
completed between the base and the first ‘node’ of the slow wave (point wherej = 0). 

Similar considerations of interaction between the fast and slow wave can be used 
to  explain another apparent paradox. Stimulation of a cat’s cochlea by an acoustic 
signal applied a t  the apex was found (Wever & Lawrence 1954, p. 275) to  generate 
distributions of cochlear potentials very similar to those generated with normal 
stimulation at the base. On the assumption that normal stimulation generates a 
travelling wave directed from base to apex, how could such a wave be produced by 
stimulation a t  the apex Z 

The answer is that the apical stimulation generates an acoustic fast wave which 
travels quickly to the base, where i t  encounters a very low impedance at the round 
window; and, a t  the oval window, the vastly greater impedance provided by the 
inertia of the stapes. To a close approximation, pressure Jluctuations are kept very 
small a t  the round window, whileJluid motions are kept very small a t  the oval window. 
The reflected-wave system generated by these boundary conditions consists of (i) a 
fast wave with equal and opposite pressure fluctuations ; this satisfies the round-window 
condition, but produces a doubling of those volume-flow fluctuations a t  the base which 
vioiate the oval-window condition; (ii) a slow wave with volume-flow fluctuations 
which cancel those at the oval window. 

Note that the slow wave has equal and opposite volume flows in the two scalae, so 
that  a t  the round window the volume flow is redoubled. However, motions there are 
negligibly impeded. Note also that the pressure cancellation a t  the round window 
produced by (i) above is not significantly altered by (ii) because, as we have seen, the 
pressures corresponding to given volume-flow fluctuations are far sinaller in the slow 
wave than in the fast wave. 

To sum up, a given acoustic stimulation at the apex leads (by reJlection at the base 
of the fast wave it produces) to generation of a slow wave of comparable volume flow, 
travelling from base to apex. Because basilar-membrane stiffness decreases apically, 
the pressure fluctuations in this wave increase substantially as it progresses (though 
not beyond the point of resonance). By contrast, any comparable slow wave generated 
(along with the fast wave) a t  the apex suffers the opposite effect: the corresponding 
pressure fluctuations decrease substantially as it progresses. It is not surprising, then, 
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that the dominant observed effect is the same base-to-apex travelling wave as is found 
with normal stimulation. 

It may be useful to  note typical solutions of the quite simple equations (A 13) and 
(A 7)  for the fast wave subject t o  pure-tone stimulation a t  the oval window. The 
solutions take the form of a standing wave 

P = f (x) exp ( i ~ ~ t ) ,  (A 19) 

where the pressures throughout the cochlea are all in phase. Here, the function f (x) 
is determined as a solution of the equation 

(Af') '+w2cg2Af = 0 with A f ' +  0 at the apex x = L (A 20) 

(where x is measured from the base a t  x = 0 in a cochlea of length L). Here, the con- 
dition a t  the apex results from the fact that  the overall volume flow J must vanish 
there. It is this which causes any fast travelling wave to  be reflected at the apex as 
an equal wave travelling in the opposite direction, so that the combination of the 
two takes the form of a standing wave (A 19) with the same phase a t  all positions. 

For example, if the cross-sectional area A were uniform along the cochlea, the 
solution 

f (x) = f (0) {cos [wc,'(L -x)]}/{cos (wc,-lL)) (A 21) 

would be appropriate. This exhibits quarter-wavelength resonance in the sense that 
when wcgl L is near &n- the fast-wave pressure amplitude f (2) a t  most points in the 
cochlea becomes large in relation to the pressure amplitude at  the base, f ( 0 ) ;  which, 
in turn, is the same for the fast and slow waves (being determined by the slow-wave 
input impedance). For a cochlea of length 35 mm, this quarter-wavelength resonance 
is realized a t  a frequency of 10 kHz. 

I n  a real cochlea, the cross-sectional area A becomes smaller towards the apex, 
decreasing with x a t  a roughly constant rate. If we take it proportional to ( L  - x), so 
that it decreases linearly to zero a t  x = L ,  then equation (A 20) gives 

f (x) = f (0) {Jo[wc,'(L -x)I}/{Jo(wci1L)L (A 22) 

with resonance for oc;lL = 2.40 (first zero of the Bessel function Jo);  a resonance 
realized a t  a frequency of 15 kHz. However, this is probably an overestimate of the 
resonant frequency. The true variation of A in a typical cochlea shows a linear de- 
crease from its value a t  the base to only a little under half as much immediately before 
the apex. Peterson & Bogert give a solution with such a distribution of A ,  and this 
exhibits resonance at  a frequency of 12 kHz; which, therefore, is likely to be the region 
of frequency for which fast-wave amplitudes may be largest. 

At lower frequencies, the fast-wave pressure amplitude f (x) shows a relatively 
moderate increase from base to apex. The slow travelling wave, starting at  the same 
amplitude, grows much more steeply in amplitude all the way to  the point of reso- 
nance. There, however, i t  falls to zero, leaving behind only the fast wave. Effects of 
the fast wave may, therefore, be found mainly in the region beyond the point of 
resonance. I n  that case, a t  a j x e d  point, they would be found mainly at  frequencies 
above the characteristic frequency. 

This is the region where Rhode (1 971) observed by his Mossbauer technique basilar- 
membrane motions quite different from those found below the characteristic frequency. 
First of all, their amplitudes were orders of magnitude lower. Secondly, and more 
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surprisingly, the velocities of the Mossbauer source that had been placed upon the 
basilar membrane were either exactly in phase or (rather more commonly) exactly 
in antiphase with the velocities of a separate Mossbauer source placed on the malleus. 
It is hard to explain this finding in terms of a ‘slow’ travelling wave, which must 
suffer a large phase lag, of magnitude sensitively dependent on frequency, between the 
oval window and the position of measurement. 

The analysis of this paper suggests, however, that  a t  frequencies above the charac- 
teristic frequency the signal may be dominated by the ‘fast’ standing wave, which is 
all at the same phase. Admittedly, the precise response of the cochlear partition to 
a signal similar to  the fast wave is not known. The essential feature of the fast wave is 
that  the pressure on both sides of the cochlear partition is the same; that is, there is 
no pressure difference to excite the normal bending response. It is, however, quite 
possible that the cochlear partition may move in some different way in response to 
such a standing-wave pressure fluctuation (equal in both scalae), of uniform phase and 
apically increasing amplitude. Here, i t  is important to notice that, if the response is 
resistive (being dominated, for example, by viscous resistance to fluid motions within 
the narrow tunnel of Corti, forced by the gradient of pressure), then its phase would 
be consistent with Rhode’s observations. 

Thus, malleus velocities must generate stapes velocities in phase. These, in turn, 
produce slow-wave pressures p in phase with the velocity of the stapes (and deter- 
mined by the slow-wave impedance at  the base). But the fast-wave pressure P is 
constrained to  be equal t o p  a t  the base. These fast-wave pressures (A 19) have increas- 
ing amplitude and uniform phase throughout the cochlea; if the basilar membrane 
responds resistively to the resulting gradient of pressure (as i t  would do, for example, 
if the pressure gradient generated a viscously resisted fluid flow in the tunnel of Corti) 
then the resulting velocity of the Mossbauer source would be either in phase or in 
antiphase with the velocity of the stapes, and so also with that of the mal1eus.t Such 
a preliminary tentative interpretation may, perhaps, be worth following up. 

We conclude this appendix with some brief comments on the response of a cochlea 
with the scala tympani drained of fluid. Experiments with physical models of the 
cochlea suggest that  this response should be somewhat closeIy comparable with that 
found in a normal cochlea. Analysis along the lines of this appendix yields the same 
conclusion. 

We have, indeed, already seen that the main difference in the wave motions to be 
expected when the scala tympani is drained lies in the absence of any fast wave. On 
a one-dimensional analysis, we have just one wave speed (A 4) instead of the two 
wave speeds (A 9) and (A 10). Since D is always much greater than K ,  we can say 
that whereas the fast wave speed (A 9) disappears the slow wave speed (A 11) is 
increased by a factor of J2.  Physically, this is because the inertia of the system has 
been halved. The same change in slow-wave speed would be found with fluid present 
in both scalae if the stiffness of the basilar membrane were doubled. 

A multi-dimensional analysis leads to the same conclusion. Propagation of the 

t By contrast, neither an  elastic response nor an  inertial response could be regarded as a 
possible explanation because each would produce motions in quadrature. Only a resistive 
response would have the right phase. Furthermore, a resistive response in the tunnel of Corti, 
if present, would have an  important damping function, controlling the amplitude of fast -wave 
motions at tho resonant frequency. 
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slow wave along the real cochlea is specified by Laplace’s equation (A 14) together 
with a condition describing how the displacement of the cochlear partition responds 
to the pressure discontinuity of 2 p  across it.  If now the stiffness of the cochlear parti- 
tion were doubled, then it would respond to this double pressure discontinuity exactly 
as the natural partition would respond to the single pressure discontinuity of p 
which would be present if the scala tympani had been drained. 

Similarly, where the inertia of the cochlear partition is taken into account (as 
becomes necessary near the point of resonance) an identical argument shows that a 
complete cochlea with the partition’s inertia as well as its stiffness doubled (or, more 
generally, with its entire impedance doubled) would respond exactly like the natural 
cochlea with the scala tympani drained. As has previously been suggested, these are 
modest changes: although they do reduce somewhat the time taken for a signal to 
reach a given point of the cochlea, they do not alter the characteristic frequency a t  
that point. 

Appendix B. Dispersion in the cochlea 
This appendix is concerned to  review experimental data, obtained (Rhode 1971) 

by use of the Mossbauer technique, in the light of the physics of dispersion and group 
velocity. It also seeks to  clarify further the distinction between classical waveguide 
resonance and critical-layer absorption given in 0s 3 and 4. 

Rhode’s data were obtained in live squirrel monkeys. He developed a surgical 
technique whereby a small Mossbauer sourcet could be placed on the basilar membrane 
and the cochlea could then be restored to its normal condition. Another Mossbauer 
source was placed on the umbo of the eardrum; that is, on the point of the tympanic 
membrane in direct contact with the handle of the malleus. Accordingly, when the 
ear was stimulated by an acoustic pure tone, the sinusoidal vibrations of both the 
basilar membrane and the malleus could be determined in both amplitude and phase. 

It is the amplitude ratios and phase diflerences that are significant. Thus, if the 
displacements of the two sources are 

a,, cos (wt + 8>,,) and a, cos (wt + 8,) (B 1)  

for the malleus and basilar membrane respectively, Rhode plots the amplitude ratio 
and phase difference 

as functions of the frequency in hertz, w / 2 n .  
Figures 8 and 9 show plots of a, and 8, against frequency for one particular animal. 

In  common with all of Rhode’s phase data it shows that the value of 8(t extrapolated 
to zero frequency is close to  in. This can be interpreted as follows. 

The basilar-membrane displacement a t  low frequencies is expected to be in phase 
with the ‘slow-wave’ pressure p (half the pressure difference across the cochlea 
partition). Furthermore, a limiting phase difference for low frequency should represent 
phase difference at the base, since for low enough frequency a travelling wave should 

t The Mossbauer source, when at rest, emits gamma rays of extraordinarily precise frequency. 
Accordingly, very small motions of the source can be detected by the Doppler shift they produce. 
For details of the method, and for important checks on the accuracy of tho resdts, see Rhode 
(1971) .  

a, = aB/ad, and 8, = 8, - O,, (B 2 )  
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FIGUKE 8. Phase difference 8, in radians betueen displacements of basilar membrane and of 
inalleus, measured as a function of frequency in kHz by Rhodo (3971) in anlmal 69.662. (Sound 
iiitorisity 85 dT3 uwd near rrsonant frcqncncy.) 
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FIGURE 9. Amplitude ratio a,, on a decibel scale (thus, the quantity plotted is 20 log,, ar) ,  
measured as a function of frequency in kHz (also shown on a logarithmic scale) by Rhodo 
(I97 1) in animal 69.473. (Sound intensity 70 dB used near resonant frequency.) 

suffer little phase change in the distance (of order 10 mm) between the base and the 
Mossbauer source. On the other hand, the slow-wave impedance should determine a 
slow-wave pressure p a t  the base in phase with stapes velocity (and so with malleus 
velocity). 

Finally, then, the basilar-membrane displacement, being in phase with p ,  and so 
with malleus velocity, should have a phase advance of 4.. over malleus displacement. 
Note, too, that  this interpretation is supported by the observed low-frequency pro- 
portionality of the amplitude ratio a, to frequency w (corresponding to  a slope of 
GdB per octave on a log-log plot such as figure 9).  

As frequency increases, however, the phase lag associated with propagation of the 
travelling wave between the base and the Mossbauer source must gradually overcome 
the initial plxise lead. Tn fact, as figure 8 shows, the measured phase difference 0, is 
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iiagative at  frequencies above about 1 kHz. Furthermore, the phase deficiency ( - 8,) 
increases steadily with frequency, in agreement with a travelling-wave interpretation, 
until the resonant frequency at  the position of the source (a frequency around 7-9 kHz 
in each case studied) is reached. The maximum value of ( - O,), reached at  the resonant 
frequency, was found to  lie between 20 and 30 radians in every case. 

Strictly speaking, the expressions (B 1)  and (B 2 )  define 6, only to  within an arbi- 
trary number of whole rotations (integer multiples of 277). Nevertheless, the measured 
low-frequency value 477 has a clear physical interpretation as we have seen, and the 
variation as w increases was found to  be smooth and continuous (nothing is observed 
that can be interpreted as a jump by 277). It follows that the difference between 471 

and the value of 8, so determined (falling to a limiting value of between - 20 and - 30) 
can be taken as indicating the true phase lag in the travelling wave between the base 
and the Mossbauer source a t  frequencies below the resonant frequency. 

By contrast, the measurements above the resonant frequency are characterized by 
a constant phase difference 8,. In  this region, indeed, basilar-membrane displacement 
is either exactly in phase or (more commonly) exactly in antiphase with malleus 
displacement; an observation which appendix A tentatively interprets as a response 
of the basilar membrane to a standing-wave distribution of the fast-wave pressures 
P, following on a complete extinction of the travelling slow wave p .  

Now, we have seen that Rhode’s method of deriving 8, (plotting the phase difference 
as a continuous function of frequency) is specially appropriate at frequencies where 
the travelling wave is present. On the other hand, when applied a t  higher frequencies 
to a basilar-membrane displacement in exact phase or antiphase with malleus dis- 
placement, it necessarily gives Oa a rather arbitrary value as the even or odd multiple 
of 77 closest to the value just below the resonant frequency. For a value between - 20 
and - 30 this is in practice either - 777, - 8n or - 977; the values quoted by Rhode as 
observed in every case. 

The remainder of this appendix is concerned with frequehcies below the resonant 
frequency, where the travelling slow wave is dominant. If that wave, at all positions 
between the base and the Mossbauer source, were non-dispersive (that is, if its speed 
had a value independent of frequency), then the time of travel of the slow wave 
between those points (say, T )  would be similarly constant; and the phase lag would be 

- 6, = wr. (B 3) 

Equation (B 3) represents a straight line on the plot of 8, against w ;  a line whose 
slope gives the time of travel r. 

Figure 8 shows that, below about 5 kHz, the measured phases lie on such a straight 
line; this is consistent with the assumption of a non-dispersive travelling wave. The 
associated travel time is 0.40 ms, corresponding to a mean wave speed of 40 m s-l 
in the 16 mm between the base and the source.? 

By contrast, the departure from a straight line above about 5 kHz is very marked. 
Similar behaviour is found in Rhode’s other experiments. This proves that, above 
about 5 kHz, the travelling wave is dispersive somewhere between the base and the 
source. 

A crude estimate of the travel time T from equation (B 3) would show it increasing 
f This may be compared (see later) wit11 an  estirnated lo\\-frequency wave speed of 15 m s-l 

at the source itself. 
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FIGURE 11.  Average wavenumber k,, between points 1 and 2, dediiced froni results in figure 10 

by equation (B 4 ) ,  and plotted as abscissa against frequency 0/2n (in IrHz) as ordinak. 

from 0.40 ms to 0.53 ms between 5 and 9 kHz. It must be emphasized, however, that 
this is only a travel time for uave crests. 

From the standpoint of energy flow, on the other hand, i t  is known that dispersive 
waves for which the speed of wave crests shows such a decrease with increasing fre- 
quency have the property that the wave energy travels at a still slower speed: the 
group velocity. Two features of Rhode's measurements help to indicate the magnitude 
of this difference. 

One clue is given by Rhode's indirect information about wavenumber. The wave- 
number, k, in a travelling wave was defined in § 4 as the rate of decrease of phase with 
distance of travel;? which, fortunately, can be estimated from Rhode's two-source 
experiments. 

Thus, figure 10 is a plot against frequency of both Odl and Od2, the measured values 

t Note that there is no possibility of giving wavenumber the very simple definition, 271 
divided by wavelength, if the wave speed varies with position (as i t  does in the cochlea, de- 
creasing towards the apex) ; that, indeed, would make such a definition inapplicable whether 
or not there is also dispersion (variation of wave speed with frequency). 

FIGURE 10. Phase differences O,, and O,, measured as in figure 8 at two points 1 and 2 on the 
basilar membrane (1.5 mm apart) in animal 69.434. 
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of 8, a t  two positions (1-5 mm apart) where two different Mossbauer sources (1 and 2 ,  
each of size 0.06 mm) had been placed. Now, the above definition of the wavenumber 
k implies that its average value kav in the region between the two sources is given by 
the divided difference 

(B 4) 

and that this expression should hold throughout that range of freqtiencies (up to 
7 kHz) for which the measurements suggest that a travelling wave remained domi- 
nant a t  position 1 (as well as a t  position 2 ) .  

Roughly, we may take kav as indicating a value of k halfway between the two 
sources. Figure 11 plots kav as the abscissa against w as the ordinate, to give a pre- 
sentation similar to that of figure 5 .  

In  such a plot, w is the rate of change of phase with time, and k its rate of change 
with distance. Thus, their ratio w/k is the speed of travel of wave crests. Figure 11 
confirms the earlier indication that this speed is independent of frequency (the wave 
is non-dispersive) below about 5 kHz. In  this frequency range, the ratio w/kav (value 
taken by that speed halfway between the two sources) is 15 m s-1. 

Above 5 kHz, however, figure I1 indicates a very clear flattening of the graph of 
w against kav.  The speed w/kav of wavecrests falls from 15 m s-l to 10 m s-l; a signi- 
ficant reduction. 

From the standpoint of energy flow, however, it is much more important that the 
slope of the curve in figure 11 falls from 15 m s-1 to 3 m s-l: a fivefold reduction. 
This slope of a graph of frequency w against wavenumber k is, of course, the group 
velocity, U ;  that is, the velocity of energy propagation. (For the extremely well- 
established foundations of this century-old principle, see any textbook of wave 
physics.) Fortunately, in the present case, Rhode’s own data afford another check 
on the fivefold reduction in energy propagation velocity that the result implies. 

To see this, note that the slow-wave impedance at the base determines the power 
input P into the travelling wave as proportioned to stapes velocity squared, and hence 
to malleus velocity squared, ( ~ a ~ , ~ ) ~ .  On the other hand, the wave energy per unit 
length, E ,  is necessarily twice the potential energy (as in any vibrating system), which 
in turn is proportional to basilar-membrane displacement squared, a$. Thus, the 

kav = (@d1-8dz)/(1-5 mm); 

ratio PIE  is proportional to  
(wanI)2/a& = wz/a: 

in terms of the amplitude ratio (B 2 ) .  
That ratio PIE  is an upper bound to the group velocity U .  This is because the power 

transmitted by the wave is EU (energy per unit length times energy propagation 
velocity); which, in turn, must be equal to the power input P if negligible energy 
dissipation has occurred, and can only become less than P as a result of energy 
dissipation. 

We have seen that, a t  low frequencies, the waves are non-dispersive, with U = 15 m 
s-l; in this frequency range, too, they are non-dissipative, so that PIE  must have the 
same value a t  those frequencies. Figure 9 confirms that PIE ,  proportioiial by (B 5 )  
t o  w2/aF, is indeed constant a t  low frequencies, as is evident from the slope of 6 dB 
per octave (on a log-log plot of a, against frequency) already mentioned. 

From the known low-frequency value 15 m s-l for PIE,  from its proportionality 
to w2/a:, and from the values of a, in figure 9, we derive values of PIE  as  in figure 12. 

7 F L h I  I06 
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Remembering that PIE is an upper bound to U ,  we have here (and from similar results 
for other animals) a confirmation that the mergy propagation velocity U suffers at 
least a fivefold reduction. 

Neither of the two methods by which this result has been obtained would allow us 
to  identify any further reductions in U which may be present. For example, this last 
method could not indicate them because of the rapidly growing importance of dissi- 
pation as the resonant frequency is approached. 

Similarly, large dissipation must reduce the efficacy of the former method. That is 
because, as the travelling slow wave becomes more and more damped, the signal 
becomes dominated more and more by the residual wave of fixed amplitude and phase 
(the one interpreted in appendix A as a standing fast wave). This must artificially 
bring to  a halt the normal travelling-wave increase in the phase deficiency ( -  Od) ,  
and so also in kav; and, therefore, restrict the extent of any increase in the slope U 
of w against kav, 

Nevertheless, i t  is interesting to pursue from a theoretical standpoint the strong 
possibility that  the local value of k at a given point may continue to increase without 
limit as w approaches the resonant frequency 0, at that point. Suppose, for example, 
that  k increases in proportion to  

where N > 0. Then differentiation shows that dk/do increases in proportion to 

(w, - oj-A’, (B 6) 

(w  - w ) - K - l .  (B 7) 

(W, - o)A‘+1, (B 8) 

therefore, the slope U = do/dk of the graph of o against k decreases in proportion to  

which is necessarily faster than (w, - w )  itself, as suggested in figure 1 (b ) .  
These conclusions a t  a fixed position imply some even more interesting conclusions 

for energy flow a t  a fixed frequency w .  At a distance x from the base just a little less 
than its value x, a t  the point where w is the resonant frequency, the local resonant 
frequency 0, must exceed w by a small amount (w, - w )  closely proportional to  (x, - x). 
Thus, by (B 8) ,  the velocity of energy propagation U must be proportional to 

(x ,  - 2)*’+1, (B 9) 

where N > 0. Therefore, the time J d x l U  for the energy at  frequency w to travel a 
distance x is proportional to 

1 
N ( x ,  - x)”’ 

= constant + 

which increases without limit as x approaches x,. 
This unlimited time available represents, of course, the fundamental feature of 

critical-layer absorption. Essentially, i t  allows any damping rate, however weak, to 
dissipate all the energy without reflection. 

By contrast, classical wa,veguide resonance requires k to tend to  zero, a t  a fixed 
position, as w tends to w, from above (so that the energy propagation velocity U can 
remain positive). If k is proportional to 

( m  - W,.)% (B 1 1 )  
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FIGURE 12.  Plain line: ratio of power input P to energy flow E, deduced as explained in the 
text from the values of a, plotbed in figure 9 for Rhode's animal 69.662. These results show a 
thirtyfold reduction in P/E .  When measurements in other animals under ot'her conditions are 
used, the corresponding reduction in P I E  is typically by a smaller factor than 30, but in no 
case is i t  by a factor of less t.han 5. This confirms that the group velociby U (which is equal to 
PIE at low frequency, and must fall below it near resonance, as a result of energy dissipation) 
suffers a t  least a fivefold reduct,ion. The results, furthermore, are consistent with the possibility 
that the group velocity actually falls to zero at  resonance, as indicated by the broken line. 

with n > 0, then dk /dw is proportional to  

(w  - f3,)fl-l 

(w - w p " .  
and U is proportional to 

If 0 < n < I ,  this does tend to  zero, although considerably more slowly than (w - (0,) 
itself, as suggested in figure I (a).  

For fixed frequency w ,  again, such a classical waveguide resonance would make U 
proportional to 

with n > 0. Then the time J" drl U for the energy to travel a distance x is proportional to 

(x, - x)l--n, (B 14) 

ax 1 s (x, - X)1-n n 
= constant - - ( T , - x ) ~ ,  

which remains finite as x approaches xr. In  such a case, reflection of wave energy can 
occur, with only a limited time available for any action of damping. The above 
highly contrasted behaviour in the two types of travelling-wave systems with reso- 
nance was used in $93 and 4 to strengthen the conclusion that energy flow in the 
cochlea must be dominated by critical-layer absorption. 
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Appendix C. One-dimensional models 
The general nature of one-dimensional models of the slow wave is described at  the 

beginning of 5 5 ;  while, in appendix A, the appropriate equations (A 8) are derived 
for a particular limiting case. This is the case when only the stiffness of the cochlear 
partition determines its motion in response to the difference between the pressure 
P + p  (taken as uniform over a cross-section of the scala vestibuli) and the pressure 
P - p  (taken as uniform over a cross-section of the scala tympani). 

Although such a model cannot exhibit any resonance, or (indeed) any dispersion, 
i t  has two important uses. At low enough frequencies (of the order of 100 Hz or less) 
it may be applied, with a boundary condition to  represent the properties of the heli- 
cotrema (see below), so as to describe the motions throughout the cochlea; whereas, 
a t  those higher frequencies which exhibit resonance at a particular place in the cochlea, 
the stiffness-dominated model may still have adequate accuracy in certain other parts 
of the cochlea; namely, those parts which are substantially closer to the base than the 
position of resonance. 

Ciose to  the base, in fact, the cochlear partition has its greatest stiffness; or, in the 
language of appendix A, its least distensibility D ;  defined as the proportional increase 
in the cross-sectional area A of (say) the scala vestibuli per unit excess of pressure in 
that seala over that  in the scale tympani. Nevertheless, in considering equations (A 8), 
we have observed that even this minimum value of D is so much greater than the 
compressibility of the fluid that compressibility can be completely neglected. (It must 
be a t  least two orders of magnitude less than D because the slow-wave speed (A 10) 
is a t  least one order of magnitude less than the sound speed (A 8).) Rewriting (A 8) 
with K omitted, and dropping the suffix zero from the effectively constant density p 
of the fluid, we obtain 

p a j p t  = - A  aplax, - ajlax = 2 ~ ~ a p / a t  (C 1) 

as the equations governing the variation of excess volume flow j and pressure p in 
the stiffness-dominated slow wave. 

Equations (C 1) w i t h j  eliminated give 

the latter expressim being the slow-wave speed (A 11). Superficially, equation (C 2)  
for p is identical with the fast-wave equation for P except in so far as the sound speed 
co is replaced by the slow-wave speed c. However, the degree of variability of coeffi- 
cients is extremely different in the two cases: the fast wave speed co is constant, so 
that  the only variable coefficient in (A 13) is A which decreases by a factor of little 
more than 2 from base to  apex. The same variable coefficient A is, admittedly, present 
in (C 2) ,  but its variability is swamped by that of the slow-wave speed c, which de- 
creases by practically two orders of magnitude from base to apex. 

There are two possible methods of treatment of an equation such as (C 2). One is 
an approximate method, based physically on the idea of energy flow, together with 
an assumption that variation in physical properties along the cochlea is sufficiently 
smooth and gradual to  avoid backscatter of energy. This is equivalent, as we shall 
verify, to the mathematical approach known as WKR. The second method is to  use 
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an exact analytical or numerical solution; the first such solution to have been found, 
due to Zwislocki (1948), is still a most helpful one, and is used below to map out the 
region of accuracy of an energy-flow (otherwise, WKB) solution. 

There is, of course, special interest in travelling-wave solutions of (C 2) .  The energy- 
flow method views these as follows. 

Equation (C 2)  represents a non-dispersive wave system with the wave speed c 
independent of frequency, so that both the wave crests and also the wave energy travel 
at speed c .  The time to  travel a distance x from the base x = 0 is 

joXc-1dx. 

A wa7e travelling in the direction x increasing is expected, therefore, to have the 
form 

p = f(x)exp i w  t -  c-ldx , (C 4) 
!ox 11 

where the real function f(x)  represents its amplitude. 
Here, the wave energy per unit length is 

ADCf @)I2.  (C 5 )  

To see this, note that the definition of the distensibility D makes the volume displace- 
ment per unit length (that is, the change in cross-section of the scala vestibuli) A B p .  
The pressure difference which generated t,hat volume displacement has changed from 
its undisturbed value 0 to  its present value of 2p, with an average o f p ,  The potential 
energy (work done by that pressure difference) per unit length is the product of A D p  
with p .  I ts  average over a cycle is one-half of (C 5). But in any vibrating system the 
average kinetic and potential energies are equal; a consideration which raises the 
total wave energy per unit length to  the value (C 5) .  

The wave-energy flow is equal to  the energy per unit length (C 5 )  times the energy 
propagation velocity c; thus, i t  is 

where D is substituted for as i / 2 p c 2  from (C 2 ) .  I n  a travelling wave without dissipation, 
energy flow must be constant, so that the aniplitndef(x) of pressure fluctuations must 
vary with position in proportion to 

(c/A)h. (C 7 )  

This clear physical method of deriving amplitude variation gives the same result 
as the asymptotic method known as WKB. I n  that method, a solution 

P = f ( 4  exp [i4t -g(x) ) l  

- d A f c - 2  = (Af’)’ - iw[ (Ag’ ) ’ f+  2AgY’I - dAg‘y-. 

(C 8) 

(C 9) 

is substituted in the differential equation (C 2) to give 

In the asymptotic limit of high frequency w,  equation (C 9) will be closely enough 
satisfied if (i) the terms in w 2  balance, giving 

(C, 10) 
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exactly as in (C 4); and (ii) the terms in w balance, giving 

f ’ l f = - B(Ag’)’/(Ag’), 
so that f is proportional, to 

(Ag’)-& = ( c / A ) * ,  

exactly as in (C 7) .  The first term on the right-hand side of (C 9)) independent of o), 
should be insignificant compared with the terms in w and w2 at high enough frequency. 

There are various good ways for estimating how high the frequency needs to  be for 
the convenient WKB expression (C 41, withf(x) given by (C 71, to  be a closely accurate 
solution of equation (C 2 ) .  However, the most clearly convincing approach to  this 
equation, in the context of cochlear mechanics, is by comparing exact solutions, for 
distributions of c and A close to those in a real cochlea, with the corresponding WKB 
solutions. 

An exact solution very useful for this purpose is that given by Zwislocki (1948) for 
the case 

c = cb exp (-ax), A = A,,  (C 13) 

where cb and A ,  are the values of c and A a t  the base x = 0. Equations (C 13) readily 
allow for a distribution of c which varies, as in the real cochlea, by practically two 
orders of magnitude (while the distensibility, according to (C 2)) would vary like 
exp (2ax) by practically four orders of magnitude). It should be much less relevant to 
questions about the accuracy of a WKB solution that the real cross-sectional area A 
shows a far more gradual variation, by a factor of little more than 2; therefore, for 
comparison purposes, it is sufficient to  make use of an exact solution for a system with 
constant A .  

Equations (C 13) substituted in (C 2 )  give a solution 

p = F ( x )  exp ( iwt ) ,  where P”(x) + w2c;2F(x)  exp (2ax) = 0. (C 14) 

Here, comparison with the approximate form (C 4) reminds us that we must expect 
F ( x )  to  be complex, representing the variation with x not only of amplitude but also 
of phase. 

In  equation (C 14) the substitution 

Z = wc;] a-l exp (ax), d l d x  = aZd/dZ (C 15) 

produces a reduction to  Bessel’s equation 

(Zd ldZ)  ( Z d F l d Z )  +ZzF  = 0, (C 16) 

with its two independent real solutions J,(Z)  and Yo(Z),  the well-known Bessel func- 
tions. On the other hand, to  represent how a wave, travelling in the direction x in- 
creasing, is generated at  the base x = 0, i t  is necessary to use a complex linear com- 
bination of these two solutions, 

F = HL2’(Z) = J0(Z) --iY,(Z). 

Indeed, the known asymptotic form of (C 17)  for large 2, 
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-4 J 
FIGURE 13. Stiffness-dominated solution of Zwislocki (1948) for pressure (plain line) and 
volume flow (broken line), compared with their common form (dotted line) on the WKB appro- 
ximation: (a )  amplitudes; ( b )  phases. --, F ;  - - -, (idF/dZ) ; . . . . , (2/7rZ)+ , - i ( Z - h *  

shows it  to  possess the necessary travelling-wave property (frequently described as 
‘the radiation condition ’); specifically, its phase decreases with increasing x. By 
contrast, any combination of J, and Yo in different proportions would include a com- 
ponent whose phase increases with x for large x, representing a wave travelling in the 
direction x decreasing with a flow of energy inward ‘from x = + 00’. 

It will be noted that expressions (C 13) and (C 15) for c and 2 make 

therefore, the leading term in the asymptotic expression (C 18) is consistent with the 
phase behaviour (C 4) given on the WKB approximation. Equally, its amplitude is 
proportional to  2-3 and therefore to cs, just as the WKB approximation (C 7 )  predicts. 
Numerically, these asymptotic forms become quite good approximations for Z > 1.5, 
as the asymptotic series in (C 18) already suggests. This is confirmed by figure 13, 
which plots amplitude and phase of the solution (C 17)  for comparison with the WKB 
approximate forms derived from the lea,ding term in the asymptotic expansion 
(C 18). 
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The condition Z > 1.5 for good accuracy of the WKB approximation can be con- 
veniently expressed in terms of the wavenumber 

k = wc-1 = wc;l exp (ax) (C 20) 

as a condition k > 1.501. The largest possible value of a is [In (100)]/(35 mm), corres- 
ponding to four orders of magnitude increase in distensibility along a cochlea of 
35 mm length. Therefore it may be assumed that the WKB approximation is accurate 
wherever 

k > 1.5[ln (100)]/(35 mm) = 0.2 mm-l. (C 21) 

Furthermore, it is reasonable to  use this condition for energy flow without back- 
scatter, k > 1.5a, relating k to  the proportional rate of variation, a,  of a steeply 
varying quantity c with distance along the cochlea, even though some other property 
such as the cross-sectional area A is also varying; at least, if it has a much lower pro- 
portional rate of variation (as is, indeed, the case). 

Most of what follows will be concerned with applications of the WKB method in 
regions where the inequality (C 21) is satisfied. First of all, however, the exact solution 
(C 17) is used to  give some suggestions about behaviour in conditions where (C 21) 
is not satisfied. 

In a position such as the first cochlear bend of the squirrel monkey, where Rhode’s 
data outlined in appendix B were gathered, the wave speed c is about 15 m s-l. 
Therefore, the condition k > 0.2 mm-l for energy flow without backscatter requires 
that  w = kc > 3000 s-l, or w / 2 n  > 500 Hz. I n  fact, this condition was satisfied for 
almost all of Rhode’s data points. 

Nearer the apex, the lower limit on frequency for the WKB approximation to  be 
applicable must decrease rather steeply (in proportion to  c) until, a t  the apex itself, 
no acoustically interesting frequencies are excluded. This consideration is found to 
be important later, when the influence of the helicotrema is treated. 

Nearer the base, however, the lower limit on frequency for use of WKB must increase 
to  1 kHz or a little more. This implies that  a t  frequencies below 1 kHz there is neces- 
sarily a region near the base where the WKB approximation has impaired accuracy. 
Fortunately, in this proximal region the cross-sectional area A varies little, so that 
it is specially appropriate to use Zwislocki’s exact solution for the case (C 13). Then 
the asymptotic property (C 18) can be applied, as Steele & Taber (1979a, b )  pointed 
out, to  match that solution to  the WKB approximation employed in the rest of the 
cochlea. 

I n  this context, it is useful to  calculate the excess volume flow j corresponding to 
the Zwislocki solution (C 14). By the first of equations (C 1) it is 

j = - (piw)-’A(dF/dx) exp ( iwt ) ,  

j = ( A / p c )  (idF/dZ)exp (id). 

(C 22) 

depending on the gradient of F ( z ) .  Using (C 15), with (C 13), we can write this as 

(C 23) 

The first factor in (C 23) represents the standard form ( A l p )  for the ‘admittance’ 
(reciprocal of the impedance) of a one-dimensional wave in a tube of cross-section A 
and wave speed c. I n  the region 2 > 1.5 where the WKB approximation is good, the 
solution (C 17) has (idF/dZ) very close to F ,  as the asymptotic form (C 18) suggests 



Energy$ow in the cochlea 193 

0.01 0.1 1 10 

zb 

FIGURE 14. Plain line: log-log plot of the factor &(Z)  = IclF/dZ1(2/nZ)-g by which the broken 
line in figure 13(a) exceeds the dotted line. The ordinate is 2010g,,Q(Zb), representing in 
decibels, as a function of 2, = wc;'a-l, either (i) the additional sound level required to produce 
a given energy flow in the travelling wave; or (ii) a reduction in travelling-wave amplitudes 
generated by given footplate vibration. Dotted line : mitigation of this reduction produced 
(see below) at low frequencies by helicotrema resonance. 

and figure 13 verifies. I n  that region, then, the volume flow and pressure are practically 
in phase and their ratio is this standard slow-wave admittance ( A l p ) .  

For Z < 1-5 there is, as figure 13 indicates, some departure of i dF /dZ  from F both 
in amplitude and phase. This has several implications, as follows. 

At the base value of 2, 
z = 2, = wc,'a-1, (C 24) 

the fact that  the pressure is not perfectly in phase with volume $ow reduces the power 
of any given vibration of the stapes footplate to feed energy into the slow wave. Figure 
13 shows that, as Z, decreases, the phase difference between pressure and volume 
flow increases from 0 to an ultimate limit of &m a t  2, = 0. The travelling-wave solution 
in this zero-frequency limit has pressure in quadrature with volume flow, so that no 
energy a t  all can be fed into the slow wave (however, we shall see that a t  frequencies as 
low as this a travelling-wave solution ceases to be applicable because of reflection a t  
the apex). At intermediate values of Z, there is (i) an energy-absorbing component of 
pressure, in phase with volume flow, and (ii) a component in quadrature, which cannot 
absorb energy and therefore makes no contribution to  generation of a travelling wave. 

The amplitude results in figure 13 give a good idea of the extent to which, when 
Z, < 1.5, a given level of energy flow in the travelling wave (as represented by the in- 
phase pressures and volume flows in the part of the diagram with Z > 1.5) requires 
footplate vibrations augmented in amplitude by a certain factor. This is the factor 
&(Z) by which, a t  2 = Z,, the broken line (representing volume flow) exceeds the 
dotted line (volume flow required according to  the WKB approximation). Figure 14 
shows that factor on a decibel scale, as a function of 2,. The quantity plotted can be 
interpreted either as (i) increased sound level required at  lower frequencies to produce 
a given energy flow in the travelling wave; or a8 (ii) reduced power input into the 
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travelling wave generated by a given vibration of the stapes footplate; or as (iii) 
reduced real part of the input impedance to  the cochlea a t  the oval window. 

Appendix B gives a method for analysing data such as those of Rhode (1971)  which 
assumes, among other things, a constant slow-wave input impedance pca/A, a t  the 
base. Although figure 14 emphasizes that at  Rhode’s lower frequencies the input 
impedance is reduced below that assumed value, we may note that the extent of the 
reduction is too modest to be observable within the scatter of Rhode’s low-frequency 
data. 

It might be marginally more feasible, in experiments such as those of Rhode (1971), 
to observe a t  lower frequencies a slight departure of the phase difference 8, from the 
value (equation (B 3)) which the WKB approximation indicates a t  lower frequencies. 
The departure should take the form of an increase, by the sum of (i) excess phase of 
the pressure at the point of measurement (full line) over its WKB value (dotted line), 
and (ii) the deficiency in phase of the volume flow at the base 2 = 2, (broken line) 
below its WKB value (dotted line). Although at the frequencies used the excess phase 
(i) has already been noted as very small, figure 13 suggests that a t  the lower frequencies 
the phase deficiencies (ii) could raise 9, above the straight line (B 3) by up to in. 
I n  the light of this it is interesting to note that Rhode’s phase measurements a t  his 
lowest frequencies are indeed seen to  lie above that line by a margin of error between 
0 and &r. 

More generally, we can use figure 13, a t  any of those frequencies which exhibit 
resonance a t  a particular place in the cochlea, to  match a W K B  solulion to  the stapes 
vibrations that may generate it. This involves noting (at those frequencies) how much, 
if a t  all, figure 13 makes the values of pressure and volume flow depart, in the region 
much nearer to the base than the position of resonance, from values given by the 
WKB approximation. 

A stiffness-dominated one-dimensional model has one other important function: to 
represent the motions throughout the cochlea a t  those still lower frequencies that fall 
significantly below any resonant frequency in the cochlea. These are frequencies 
(around 100 Hz or less) for which the slow wave extends all the way to the apex, so 
that it is necessary to consider what boundary condition determines the reflection, if 
any, that may occur at tha apex. 

Careful consideration along these lines leads to a conclusion of definite physiological 
interest. Although (as noted in appendix A) the fast wave obviously satisfies the 
condition J = 0 at the apex (where termination of the cochlea forces the net volume 
flow to be zero), the corresponding condition on the slow wave is different: non-zero 
volume flows + j  in the scala vestibuli and - j  in the scala tympani are possible a t  the 
apex provided that an equal volume flow j passes through the helicotrema from the 
scala vestibuli into the seala tympani. 

As is well known, the helicotrema is a small hole in the cochlear partition, of dia- 
meter from 0.25 t o  0-30mm, situated very close to  the apex. This permits direct 
movement of perilymph, through the hole, between the scala vestibuli and the scala 
tympani. The required boundary condition a t  the apex should relate the volume flow 
j through the hole to  the pressure difference 2p which forces it. 

From the standpoint of the mechanics of oscillatory flows, the helicotrema is a 
constriction; indeed, its area (about 0.06 mm2) is an order of magnitude less than the 
cross-sectional area of the scala vestibuli just proximal to  it.  The pressure difference 
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2p across such a constriction has to  balance primarily the substantial acceleration of 
fluid as a given volume flow j is channelled through the narrow hole. The required 
pressure difference for a hole of diameter d is known to be about 

2P = (P /d)d j /d t ,  (C 25)  

where the quantity in brackets is referred to as the ‘inductance ’ or ‘inertance ’ of the 
hole (see Lighthill 1978, $2 .5 ,  for methods of calculating this). I n  addition to this 
inertial term (C 2 5 )  in 2 p ,  there is also a viscous-resistance term directly proportional 
toj ;  but consideration of its damping effect may, a t  this stage, be usefully postponed. 

In the apical portion of the cochlea, where the WKB approximation can be used 
even a t  frequencies of the order of 100 Hz, we may take the pressure as 

Here, the first line represents a forward travelling wave which satisfies the WKB 
relationship (C 12)  and which, when extrapolated to the base according to that rela- 
tionship, would have amplitude T ;  while, of course, figure 13(a)  indicates how the 
true amplitude near the base would fall short, by the factor by which the full line 
falls below the dotted line. 

The second line in (G 26) represents, on exactly the same basis,? the wave reflected 
at the apex x = L (where L is the length of the cochlea, measured along its helically 
curved axis). I n  this line, the first integral represents the time taken for the wave to 
reach x = L, and the second integral the time for its reflection to reach the point with 
co-ordinate x. The coefficient R may be complex, with an argument representing a 
phase change due to  the presence of the helicotrema. On the other hand, while damping 
is still not taken into account, there can be no amplitude change and we must expect 
that IRI = 1. 

The corresponding WKB approximation to j is obtained by multiplying by the 
local slow-wave admittance ( A l p ) ,  as discussed after equation (C 23); and, also, 
changing the sign in the second line, because it is the volume flow in tke direction of 
propagation that is in phase with p .  Thus, 

j = T ( A / p c )  (c/c,)) ( A , / A ) i  (exp [iu (t-/zc-ldx)] 
0 

The reflection coefficient R can now be determined by applying the boundary 
condition (C  2 5 )  to  the values of (C 26)  and (C  27 )  a t  the apex x = L. Suppressing 
factors which appear on both sides of the resulting equation, we obtain 

t Note that this corresponds to the solution y’ = -c-l  of (C 10); also, ( C  1 7 )  must be re- 
placed by its complex conjugate Hb”(2) = J,(Z) + iY,(Z) ; so that the amplitude modifications 
near the apex in figure 13 are retained but the phaso riiodifications hare  their sign chaiigcd. 
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where subscript a denotes values a t  the apex. The solution of (C 28) for R does, as 
expected, have I R( = 1 and can, if desired, be expressed as a phase advance in the 
reflected wave: 

R = [ 1 +  (2ic,d/A,w)]/[l- (2ic,d/A,w)] = exp [2i  tan-l (Bc,d/A,w)]. (C 29) 

The fact that a constriction leads to such a phase advance in a reflected wave is a 
well-known general property of one-dimensional waves in fluids (Lighthill 1978, p. 
120). I ts  application here leads to an interesting suggestion regarding the helico- 
trema’s function. 

Before going into quantitative details, we note the essential idea. The total phase 
lag as the wave travels from base to apex and its reflection then travels from apex to 
base can, a t  one particular frequency, be exactly cancelled by the phase advance due 
to  reflection at the helicotrema. There is then resonance a t  this particular frequency, 
which produces an increased response of the cochlea to  given footplate vibrations. 
We shall see that this particularresonant frequency may have two valuable properties: 
(i) affording afurther resonance at  a frequency just below the range of frequencies for 
which any part of the basilar membrane can resonate; (ii) partially counteracting the 
loss of cochlear response to tones of relatively low frequency indicated (figure 14) by 
pure travelling-wave theory. To sum up these suggestions, the helicotrema helps to  
extend downwards the frequency range for useful auditory response. 

I n  a qualitative sense, we are dealing with ‘beer-bottle’ resonance such as is com- 
monly generated when any wide tube interacts with a constriction. Modifications that 
result when two wide tubes are separated by a constriction, and by a variably disten- 
sible partition, and the motion is generated by forcing a t  the end of one tube, are all 
of merely quantitative significance. . . . . Actually, the quantity we are most concerned 
to  estimate is a ‘response ratio’; namely, the ratio of volume-flow fluctuations near 
the apex (the region expected to play the main transduction role at these lower 
frequencies) to the volume-flow fluctuations a t  the base associated with footplate 
vibration. 

It is convenient to  become quantitative in two stages, of which the first gives only 
an extremely crude estimate of the resonant frequency. This first stage makes the 
WKB approximation a t  all points in the cochlea. Then the ratio (apical to basal 
volume flow) just referred to is given by putting .2: = L and x = 0 in (C 27), yielding 

(j)z=L/(j)z=o = [(A,c,/c,A,)i exp ( - i w ~ ) ]  (1  - R)/[1 - Rexp ( - Z i o ~ ) ]  (c 30) 

as the WKB approximation to  the response ratio. Here, the first factor in square 
brackets is the corresponding travelling-wave value; while 7 stands for the travel 
time 

(C 31) 

of the slow wave down the cochlea’s whole length L. 
Comparison with (C 29) suggests that helicotrema resonance (making (C 30) infinite) 

occurs at a certain frequency w = w H ;  namely, the frequency for which the total phase 
lag 2w7 due to wave propagation cancels the phase advance 2 tan-’ (2c,,d/Auo) due 
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FIGURE 15. The frequency OH of helicotrema resonance: dependence of 0137 on 2(c,7) d / A ,  
predicted by the crude approximation (C 32) (broken line) arid the improved approximation 
(C 37) (plain line). 

to reflection a t  the helicotrema. This resonance condition determines ofI as the fre- 
quency for which the one-way phase lag wH 7 satisfies the equation 

(wH 7) tan (wH 7) = 2(c, 7) d/A,. (C 32) 

Figure 15 (broken line; for full line see later) plots the not very sensitive dependence 
of w, r on 2(c,r) d / A ,  which equation (C 32) predicts. 

Just  because this dependence is not very sensitive, it should suffice to estimate 
(c,7) from the simple exponential distribution (C 13) of c, giving by (C 19) 

c,7 = ~ , [ c ; ~ a - l - c ; ~ a - ~ ]  = ~ ~ ( 1  - c  a 8  c p l )  = a-l + 7 .5  mm, (C 33) 

where c,c;l is neglected as very small and a is estimated as in (C 21). With an apical 
cross-section A ,  of the scala vestibuli around 0.4 mm2 and with d about 0.275 mm, 
this makes the right-hand side of (C 32) equal to about 

2(7.5 mm) (0.275 mm)/(0*4 mm2) = 10. (C 34) 

Figure 15 (broken line) shows that, for any value in the general neighbourhood of 
10, the WKB approximation (C 32) makes the one-way phase lag wII 7 close to 

1.4 radians = 82 degrees. (C 35) 

This conclusion, however, merely demonstrates what we knew before; namely, the 
complete lack of realism in the assumption that the WKB approximation is applicable 
throughout the cochlea. Indeed, (C 35) with (C 33) makes the wavenumber a t  the 
apex, k, = wH/c , ,  equal to 0.2 mni-l; a value for which the use of WKB at  the apex 
itself is only just acceptable. (We shall see, howerer, that a more accnrnte est,imate of 



198 J .  Lighthill 

wH raises k, to  a level which satisfies by a greater margin the condition (C 2 1 )  for 
applicability of WKB.) 

The corresponding value of the wavenumber a t  the base, k, = O H / c b ,  is around two 
orders of magnitude lower, making 2, = k,a-l around 0-015. As expected, this is a 
value for which the WKB approximation is quite seriously in error. Fortunately, 
however, this is by a rather precisely known margin, shown explicitly in figure 13. 
Furthermore, its effects on the important response ratio (C 30) are found exclusively 
in (j)z=o, and take a rather simple form, as follows: 

(i) both in the apically travelling wave and (see footnote above) in the reflected 
wave, the amplitude of j is increased, by the factor &(Z) by which the broken line in 
figure 13(a) departs from the dotted line; these changes require us to  divide (C 30) 
by the factor Q(Z,) already plotted (on a decibel scale) in figure 14; 

(ii) the phase lag w7 is decreased where i t  occurs in the denominator of (C 30) by 
the margin by which the broken line in figure 13(b) departs from the dotted line 
(again, the footnote explains why the lags are identical in both waves). 

Now, in connection with the possibility of helicotrema resonance, it is worth noting 
that our first crude estimate 0.015 for 2, is so small as to  suggest that the said phase 
margin is very close to an. With that value of the phase margin, equation (C 30) 
would be replaced by 

(j)z=L/(j)z=o = [(Aac,/caA,)'  exp(-iw7)1 [&(2,)1-1(1-R){1-Rexp[- 2 i (w~-&)l}-~ .  
(C 36) 

We now determine a revised estimate of the frequency wH for helicotrema resonance 
by equating to  zero the expression in curly brackets in (C 36). Furthermore, because 
the corresponding revised estimate of 2, turns out to  be 0.021, a value of Z for which 
the relevant phase margin in figure 13(b) is very close to &r, it will be unnecessary to 
make any further revisions in the estimate. 

Comparison of (C 29) and (C 36) now shows that helicotrema resonance occurs at 
the frequency wII for which the total phase lag 2(w,  7 - in) in volume flow cancels 
the phase advance 2 tan-l (2c,d/Aao>) due to reflection at  the helicotrema. The equa- 
tion corresponding to (C 32) then becomes 

(wH 7) tan (wfI 7 - an) = 2(c ,  7) d / A , .  (C 37) 

Figure 15 (full line) plots the corresponding dependence of wII 7 on 2(ca7)  d /A , .  
Once more, this dependence is seen to be relatively insensitive in the neighbourhood 

of our admittedly rather rough estimate of 10 (see (C 34)) for the right-hand side of 
(C 37). For any value in the general neighbourhood of 10, equation (C 37) makes 
uI17 close t o  

(C 38) 

With (C 33) this, in turn, makes the wavenumber a t  the apex, k, = wH/c , ,  equal to 
0.28 mm-l. This is well within the range (C 21) for which use of the WKB approxi- 
mation at the apex (which led to  (C 29)) is justified. Also, the corresponding wave- 
number a t  the base, k, = w l r / C b ,  is two orders of magnitude lower, making Z, = k b c l  
around 0.021. Fortunately, the margin between the broken and dotted lines in figure 
13 ( b )  differs negligibly from an (as assumed above) for values of 2, of this order. 

The dotted line in figure 14 plots, on a decibel scale, the gain in magnitude of the 
response ratio from the product of the last two factors in (C 36) (that is, the factors 

wH 7 = 2.1 radians = 123 degrees. 
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involving R, representing departures from travelling-wave theory). This is plotted 
as a function of Z,, with o and 8, related as described above. Such a gain, by the 
amount of the dotted line, is seen to  offset significaiitly the loss (full line) indicated 
by travelling-wave theory in the same range of values of 8,. (At higher values, of 
course, basilar-membrane resonance should play a similar role.) 

Here, the dottecl-line resonance curve is not extended indefinitely upwards. This 
is because a significant amcunt of damping (neglected above) must necessarily accom- 
pany helicotrema resonance. The actual extent of viscous damping of flow through 
the helicotrema cannot be estimated a t  all precisely without really detailed know- 
ledge of matters such as edge radius of curvature. However, it is easy to see that the 
helicotrema resonance must be a relatively ‘low-&’ system; that is, the resonance 
peak must have only modest height but substantial bandwidth. Nevertheless, even 
if damping truncates the resonance peak below the level shown in figure 14, the offset 
just described is still significant. 

The claim that the helicotrema helps to extend downwards the frequency range for 
useful auditory response by affording an additional resonance (probably of broad 
bandwidth) below the range of frequencies for which any part of the basilar membrane 
can resonate is borne out by the value of wH calculated above. This is eaka with k, 
estimated as 0.28 mm-l. The value of the apical slow-wave speed c, is subject to 
rather more uncertainty and variability but is of the order of magnitude 1 m s-l. 
There is sufficient indication that the above claim needs to  be taken seriously in the 
fact that the wII in hertz corresponding to  c, = I m s-l is 45 Hz. 

The rest of this appendix is entirely devoted to  those higher frequencies for each of 
which there is resonance a t  a particular point of the basilar membrane. This, as 
discussed in § 1, is a much more lightly damped resonance. 

It is emphasized in 5 6, and further explained in 5 7 ,  that  such a resonance is specified 
(see equation ( 2 ) )  by a (stiffness’ and an ‘inertia’; which, in turn, have to be defined 
(see equations (3)  and (4)) in relation to some particular measure of departure from 
the undisturbed state called a ‘generalized co-ordinate ’. Furthermore, a generalized 
co-ordinate which is extremely convenient both for one-dimensional and multi- 
dimensional models is noted in 5 7 just after equations (3) and (4). 

This is V ,  where + V and - V represent the volume changes in the scala vestibuli 
and scala tympani per unit length of the cochlea. For this generalized co-ordinate, 
the stiffness s is the ratio 2p/ V ,  where Zp is the pressure difference required to produce 
the volume change per unit length V .  Evidently, the work done by this pressure 
difference sV in raising the volume change from 0 to V is &sV2: the standard form (3) 
for the potential energy per unit length. 

Comparison of the above definition of s with the definition of distensibility given in 
appendix A and again a t  the beginning of this appendix shows that 

s = (AD)-’ = 2 p A - V .  (C 39) 

Here, the second form relates s to  the slow-wave speed defined in (C 2 ) .  
The corresponding inertia, m, takes a value depending 011 the shape of the bending 

mode of the partition in response to  a uniform pressure difference. If the volume 
change V is produced by a partition displacement 

x = V<(y) across the width 0 < y < 21 (C 40) 
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of the partition, and the corresponding thickness of the partition is h(y )  for 0 < y < 21, 
then the kinetic energy per unit length is 

Here, the density of the cochlear partition is taken as indistinguishable from the 
density p of the perilymph, so that [ph(y)] dy is its mass per unit length between y 
and y + d y ;  while vC(y) is the transverse velocity. By equation (4), the inertia m is 
the coefficient of &v2 in (C 41); that is, 

Here, by (C 40), <(y) is the shape of the bending mode, normalized so that 

Not surprisingly, with a generalized co-ordinate representing volume change per unit 
length, the inertia per unit length given by (C 42) has the dimensions of density. 

The expression (C 42) helps to indicate why the partition inertia m may take some- 
what larger values than might a t  first be expected. Thus, it can be rewritten as 
(pES)/(21), where E is a weighted mean of the thickness h with [ & ) I 2  as weighting 

function, and the shape parameter S is (21) [5(y)I2 dy. Here, given equation (C 43), 

S must exceed 1 (because any mean square exceeds the corresponding square of the 
mean) and can be substantially greater than 1 if the main displacement of the cochlear 
partition is found within only a small fraction of its overall width. Then m is greater 
by this large shape factor S than the value, (pZ)/(ZZ), which might be indicated by a 
very crude argument. The above considerations are part of the case for rejecting the 
view of Zwislocki (1965) that  m must be regarded as negligib1e.t 

I n  vibrations of the cochlear partition, its rate of change of energy (kinetic plus 
potential) is equal to  the rate (2p) 

s,”‘ 

of working by the fluid pressure difference 21): 

a(&mP+&sV2) /a t  = 2 p v .  

mF+sV = ~ p ,  
Divided by v ,  this gives 

the normal equation for a simple harmonic oscillator with natural resonant frequency 

w, = (s/m)& (C 46) 

(as in equation (2)) subject to  an external forcing 2p. 
Now, whatever properties of the cochlear partition are taken into account, the 

fluid momentum equation remains as in the first of equations (C 1) .  Also, the down- 
ward gradient in volume flow, ( - ajlax), must represent the local rate of increase 
in volume per unit length. Therefore, on taking the downward gradient ( - a/ax) of 
that  fluid momentum equation, we obtain 

t Other parts of the same case are related to  the importance of including within rn tho inertia 
of all those structures that are mounted on the cochlear partition. 
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The combined equations (C 45) and (C 47) can be treated in any particular case by 
numerical methods. It is, however, extremely easy in every case to  obtain a solution 
on the WKB approximation, as follows. This should apply in the cochlea for values 
of the wavenumber k exceeding a definite limit as in (C 21). 

I n  a travelling wave, the wavenumber k is the rate of decrease of phase (see appendix 
B just before equation (B 4)).  The WKB approximation simplifies the effect of the 
a/ax terms in an equation such as (C 47) by assuming that, for large enough k, they 
act only on the phase variation (and not a t  all on the variation of amplitude, or of a 
coefficient like A ) ;  each (a/&),  then, is replaced by ( - i k ) .  It uses this to define a 
dispersion relationship, and hence an energy propagation velocity; and, finally, as 
in equations (C 5) to (C 7), determines amplitude variation by conservation of energy 
flow. 

On this programme, (C 47) evidently becomes 

pV = - Ak'p, 

(m + 2pA-lk-2) v + s v  = 0. 

w = [s/ (m + 2 p A - W ) l k  

(C 48) 

(C 49) 

so that equation (C 45) can be written 

This defines the local frequency as a function of k (that is, the local dispersion relation- 
ship) as 

This expression for (0 does have the general form (5) predicted in $ 7 ,  with a fluid 
inertia mf equal to 

The commentary on figure 4 ( b )  discusses a t  length the physical reason why this fluid 
inertia has a k-2 dependence. (Note also that, for the rectangular scala of height 1 
and breadth B = 21 there assumed, equation (C 51) does become exactly p(kZ)-2.) 

(C 50)  

mf = 2 ~ A - l k - ~ .  (C 51) 

It is convenient to  solve (C 50) for k as 

k = klw(w:-w2)-J  with k ,  = ( 2 p / A m ) * .  (C 52) 

Here, k ,  may vary gradually with x while the resonant frequency w, varies far more 
steeply along the cochlea. Equation (C 52) makes the energy propagation velocity 
(group velocity) equal to 

U = (ak/aw)-' = k;lw;2(w,2-w2)$. (C 53) 

The results (C 5 2 )  and (C 53) are fully in agreement with the general theory of appendix 
B for systems with critical-layer absorption; specifically, they agree with (B 6) and 
(B 8) for the case N = &. 

The energy per unit length still takes the form (C 5 )  (twice the potential energy) 
in terms of the pressure amplitudef(x), but it is now more convenient to write this in 
terms of the amplitude I 81 of the generalized co-ordinate 8. The energy per unit length 
is the average of s V 2  which is 

$81 Vl2 = 4mwf 1 8 1 2 .  

&/2lr,l(w'E - w2)3 I vp. 

(C 54) 

Accordingly, we see that the energy flow rate ( U  times (C 54)) is 

(C 6 5 )  
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For waves of fixed frequency w,  then, constant energy flow requires I VI to  vary in 
proportion to 

(Icl/m): (wf - d - 2 .  (C 56) 

This shows the expected build-up a t  the point where the resonant frequency w, is 
equal to w.  

Further details can be given in a specially simple form in the case (C 13)) which 
by (C 46) makes (or proportional to  exp (-ax) with A constant, provided that the 
partition inertia m is also taken constant. This is the interesting case for which 
Schroeder (1973) and Zweig (1976) worked out the WKB solution in some detail, 
and verified that it had properties broadly similar to those observed by Rhode (1971). 
The solution in question is also of rather more general value as an  indication of local 
behaviour in any region near enough to  a point of resonance for A and m to  vary 
insignificantly within the region. 

I n  this case, the phase 0 takes the form 

O = a-lk, tan-1 [ (w: - w2)* w-13 + constant, (C 57) 

as may be verified by differentiating (C 57) to show from (C 5 2 )  that  Ic = -aB/ax. 
Expression (C 57) for phase shows the expected tendency to fall with increasing 
steepness as the point with 0,. = w is approached. 

Again, for waves of fixed frequency w,  the time taken for wave energy to reach a 
given point has the form 

as may be verified by differentiating (C 58) to show from (C 53) that  atlax = U-l. 
(In both the above differentiations, the property aw,/ax = -aw, of the exponential 
distribution of resonant frequency is used.) 

Equation (C 58) exhibits the fundamental property of critical-layer absorption: the 
time taken to reach the point where w, = w is infinite. This allows an unlimited time 
for any damping, however light, to dissipate all the energy. 

The above results confirm that one-dimensional models taking into account partition 
inertia can exhibit critical-layer absorption. Indeed, as discussed in $ 6 ,  this is the 
secret of their success. The detailed results for such models that are derived above 
may be borne in mind for comparison with corresponding results for multi-dimen- 
sional models to be given in appendices D and E. 

t = a-%,(wf - w2)-* + constant, (C 58)  

Appendix D. Two-dimensional models 
The broad success of certain types of one-dimensional model derives, as appendix C 

has made clear, from their incorporation of critical-layer absorption. On the other 
hand, their value in certain matters of detail remains uncertain, because of their 
questionable assumption of one-dimensional motions, associated with a fluid pressure 
distribution that is uniform over each scala. This appendix is devoted to a preliminary 
testing of the conditions under which that assumption may or may not be a good 
approximation. 

The testing must be described as preliminary in that this appendix extends the 
modelling only to two dimensions. Specifically, i t  allows only for a possible variability 
of the fluid pressure distribution with distance from the cochlear partition. For a 
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fuller three-dimensional analysis, allowing also for variability across the width of the 
partition, see appendix E. 

In a two-dimensional analysis, the influence of the height 1 of a scala is crucial. Here, 
1 is the distance from the cochlear partition of the opposing rigid boundary provided 
by the temporal bone. In  terms of this height 1, the assumptions of a one-dimensional 
theory are shown to break down when kl is large enough (where k is the wavenumber). 

Of course, a real cochlear cross-section is practically circular, so that the height 1, 
as just defined, is hardly a precise constant. A pure two-dimensional model cannot 
allow, however, for variation of 1 (or of anything else) across the width of the cochlear 
partition. Thus, it is limited to the use of a single average value for 1. This is equivalent 
to representing the cochlea’s practically circular cross-section by a square (of side 21) 
of the same area. Maintaining the area unaltered ensures that, where the one- 
dimensional theory (which depends only on the area A of a cross-section, and not on 
other features of its geometry) is valid, its conclusions are unaltered. For a human 
cochlea, 1 needs to be taken as around 0.7 mm to make the square of side 21 have the 
correct cross-sectional area of around 2 mm2. 

The basic characteristic of multi-dimensional models, derived in appendix A (see 
equation (A 14))) and used also by all other writers, is that the slow-wave pressuresp 
satisfy the fundamental equation for motions of an incompressible fluid: Laplace’s 
equation, Vzp = 0. For two-dimensional models, however, p depends only on distance 
x along the cochlea and on distance z from the cochlear partition, so that this equation 
becomes simply 

a2ppx2 + azplaz2 = 0. (D 1) 

If now we make the WKB approximation then, as explained in appendix C following 
equation (C 47)’ we must move towards a dispersion relationship through a process 
in which each (alax) is replaced by ( - ik).  Equation (D 1 )  then becomes 

a 2 p p  - k2p = 0, (D 2) 

p = p+ekz+p-e-ke, (D 3) 

an equation of which the general solution takes the form 

with p+ and p- constant. Now, a t  the assumed distance z = 1 from the cochlear parti- 
tion, the rigid boundary makes any acceleration perpendicular to it impossible, SO 
that  the pressure gradient ap/az must be zero. This gives 

kp+ekl - kp - e-kl = 0. (D 4) 

Equations (D 3) and (D 4) can be used to  relate the generalized co-ordinate V ,  that 
was introduced in appendix C to describe the motion of the cochlear partition, to the 
local value of the pressure fluctuationp. Such a relationship can be used in combination 
with the equation of motion (C 45) of the partition itself to define a dispersion re- 
lationship. 

Since, in our two-dimensional model, the definition of the generalized co-ordinate 
makes its second time derivative V equal to the width 21 of the cochlear partition 
multiplied by the acceleration of the adjacent fluid, which in turn is generated by 
pressure gradient, we have 
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Also, the local pressure fluctuation p a t  the cochlear partition is 

( P L O  = P+ 4- P-- 

Here, by (D 4), p-  = p+e2kl, so that  (D 5 )  and (D 6) give 

( 2 ~ ) ~ , ~  = - - p p l ( k Z ) ,  where I(kZ) = (e2kz+ l) /[kZ(eZk1- l ) ] .  (D 7)  

It is this local value (D 7 )  of the pressure difference across the cochlear partition 
that forces its motion in accordance with equation (C 45). We now see, by (D 7) ,  that 
this equation of motion can be written 

(rn+mf) v+sv = 0, 

mf = pl (kZ)  = p(kZ)-l[(e2kr+ l)/(eSkl-  I)] .  

(D 8) 

(D 9) 

where the effective fluid inertia mf is 

It is the non-dimensional quantity mf/p = I(kZ) which is plotted in figure 3. Note 
that i t  coincides with the one-dimensional value (kZ)-2 given by (C 51)  for small enough 
kl.  However, for kl > 0.5 it already deviates significantly from that value given by 
one-dimensional theory. With I = 0.7 mm, this condition f o r  one-dimensional theory 
to become inadequate is k > 0.7 mm-l. 

At still larger values of kl (say, kl > 1.5, corresponding to k > 2 mm-1) the expres- 
sion in square brackets in (D 9) is very close to 1, so that effectively we have 

mf = p(kZ)-l. (D 1 0 )  

This is the limit in which, by (D 4), p ,  becomes insignificant compared with p-  so 
that  the fluid motions fall off like e-kz with distance from the partition. Then, as k 
increases, the fluid motion becomes effectively confined within a smaller and smaller 
distance, of order k-l, from the partition; (D 10) represents the decreasing inertia of 
that  narrowing fluid layer. For other aspects of the transition between p(kZ)-2 for 
small kZ and p(kZ)-l for large kl, see the discussion centred upon figure 4. 

The basic dispersion relationship ( 5 )  relating frequency to the s u x  of partition 
inertia and fluid inertia takes a specially interesting form in the case (D 10) which 
applies for k > 2 mm-l. This form comes within the general analysis of critical-layer 
absorption given a t  the end of appendix B, but i t  corresponds to a value N = 1 as 

opposed to  the value N = noted in appendix C as found when the same phenomena 
are analysed on the over-simplified one-dimensional theory. 

Solving the dispersion relationship 

w = {s/[rn+p(kl)-l])~ (D 1 1 )  

kl = pm-'w2(w,2 - w2)-l. 

u = (ak/aw)-l = mZp-'(2ww,2)-1 (w: - w y .  

for k, where w, = (s / rn )$ ,  we obtain 

(D 12) 

(D 1 3 )  

The corresponding energy propagation velocity (group velocity) is 

Continuing to write the energy per unit length in the form (C 541, we multiply this 
by U to  obtain the energy flow as 

gm2Zp-l(f,-yo; - d ) 2  1 v y .  P 14) 
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For waves of fixed frequency, then, constant energy flow requires the amplitude I V I 
to vary in proportion to  

This is an only slightly more rapid build-up towards the point of resonance that is 
indicated (equation (C 56)) on one-dimensional theory. 

As in appendix C, we can give further details in a specially simple form in the case 
(C 13) with w, proportional to exp ( -  ax )  and with 1 constant (since A = 212 is to be 
constant). I n  this case, the phase 8 has the form 

m-lZ-&(w; - w2)-1. (D 15) 

8 = (p/2aZm) In (1 - w2w;2) + constant, (D 16) 

as may be verified by differentiating (D 16) to show from (D 12) that N/ax = - k. 
Equation (D 16) shows a still more pronounced tendency than does (C 57) for the 
phase to  fall with increasing steepness as the point with w, = w is approached. 

Again, for waves of fixed frequency w ,  the time taken for wave energy to reach a 
given point is 

t = (p/alm) w(wF - w2)--1, (D 17) 

as may be verified by differentiating (D 17) to show from (D 13) that atlax = U-l.  
Equation (D 17) shows that the most important property of critical-layer absorption 
(unlimited time available for damping of wave energy ahead of the point of resonance) 
is present to an even more marked degree for two-dimensional models than is indi- 
cated by (C 58) for one-dimensional models. 

The general behaviour near the point of resonance indicated by (D 12), (D 15), 
(D 16) and (D 17) is important because i t  will be found in appendix E to be retained 
for the much more realistic three-dimensional models with critical-layer absorption. 
The results were set out graphically in figure 6.  Here, the graph marked (a )  represents 
expression (6) ,  to  which are proportional both (i), by (D 12), the wavenumber k ;  and 
(ii), by (D 17), the time (&/an), measured in wave periods, required for wave energy 
to  reach a point. Similarly, graph ( b )  represents expression (7),  which by (D 16) is 
proportional to phase. 

Finally, graph (c) represents an ‘amplitude intensification factor’ 1 Vl/lKl,  where 
IV,( is amplitude given, on the WKB approximation, by a stiffness-dominated one- 
dimensional model. On such a model, the energy propagation velocity is the slow- 
wave speed c, which by (C 39) ~ i t h  A = 2Z2 can be written 

c = Z(s/p)I = Z(m/p)b,.. (D 18) 

*mz(m/p)+ w;\ 6 1 2 .  (D 19) 

Multiplying this by (C 64) we obtain the energy flow for waves of amplitude IV,( as 

Equating this to (D 14) we obtain the amplitude intensification factor (that is, the 
ratio I V (  / I  V, 1 for fixed energy flow) as 

Here, the quantity in square brackets is given in 9 10 as expression (8), and plotted 
on a decibel scale in figure 6 as graph (c). 
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Appendix E. Three-dimensional models 
Any balance-sheet of the merits and demerits, as realistic descriptions of cochlear 

mechanics, exhibited by models that  are one-dimensional (appendix C) or two- 
dimensional (appendix D) must be very evenly divided between them. There is one 
respect in which two-dimensional models are greatly superior: a t  relatively higher 
wavenumbers (k > 0-7 mm-l) they make due allowance for variability of fluid motions 
with distance from the cochlear partition; while, especially, a t  wavenumbers exceeding 
about 2 mm-l, they allow for those motions t o  be confined within a narrow layer 
whose thickness decreases like k-’ as k increases. No such variability is allowed for in 
one-dimensional models. 

On the othcr hand, two-dimensional models are grossly unrealistic in that they 
allow for no variation a t  all across the width of the cochlear partition. I n  this matter, 
a one-dimensional model is greatly superior, allowing as in (C 40) for a realistic shape 
of bending mode of the partition. Two-dimensional models presuppose the absurdly 
unrealistic bending mode in which c (y )  = constant; as if the bony shelf and all parts 
of the basilar membrane and the spiral ligament could all make uniformly equal 
transverse displacements, . . . . 

There is one other feature of two-dimensional models which may, possibly, appear 
unsatisfactory from the standpoint of biological realism ; but which, nevertheless, 
must be regarded as unlikely to  degrade significantly those models’ representations of 
cochlear mechanics. This is the replacement of the cochlea’s practically circular cross- 
section by a square of the same area. This change, however repugnant it might seem, 
cannot substantially reduce the accuracy of two-dimensional models, because (i) for 
the lower values of kl they become identical with one-dimensional models, whose 
properties depend only on the area and not on the shape of a cross-section; while (ii) 
for the larger values of kl the fluid motions are progressively confined more and more 
to  the neighbourhood of the cochlear partition, where they cannot be significantly 
influenced by the shape of the rigid boundary. To sum up, the grossly unrealistic 
feature in two-dimensional models is the neglect of variability of bending displace- 
ment across the cochlear partition’s width, and not any neglect of the corresponding 
variability in the height of a scala. 

Only a proper three-dimensional model, such as Steele (1974) pioneered, can avoid 
the principal demerits of both the one-dimensional and the two-dimensional models. 
A three-dimensional model can readily allow for a fully realistic shape (C 40) of bending 
mode of the cochlear partition across its width. At the same time, it can take full 
account of the variability of fluid motions with distance from the partition. The 
mathematics, however, is greatly simplified if we continue to represent the cochlear 
cross-section as a square of side 21; a siniplification which, for the reasons just given, 
may be adopted with some confidence. 

The mathematical simplification just mentioned results entirely from the fact that, 
in a square cross-section’ the pressure distribution can be conveniently expanded in 
a Fourier series, 

m 

P = P ~ ( x ,  z )  + 2 C Pn(x,  z )  cos (nny/2li (E 1 )  
n = l  

for 0 < y < 21. This series comprises cosines only (and not sines) because the pressure 
gradient ap/ay must be zero at  y = 0 and y = 21 (which, as rigid boundaries, neces- 
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sarily prevent any fluid accelerations perpendicular to  them). Because every term 
in (E 1) miwt separately satisfy Laplace's equation, the coefficient pn(r , z )  has to  
satisfy 

(E 2 )  a2pn/ax2+ a2pn/az2- ( n 7 ~ / 2 1 ) ~ p ~  = 0.  

This coincides with (D 1) only in the case n = 0. 
If now we make the M7KB approximation then, as explained in appendix C following 

equation (C 47), we must move towards a dispersion relationship through a process in 
which each ( 8 l a . r )  is replaced by (-ik). Equation (E 2) then becomes 

a2pn/az2- [k2+ (nn/21)2]p,, = 0. (E 3) 

We may conveniently note that this is identical with the corresponding two-dimen- 
sional equation (D 2 )  for p with 

k replaced by [ k 2  + (n7r/21)2J4; (E 4) 

a rather simple substitution. 

shape (C 40) of bending mode in terms of the valucs of the integrals 
It is straightforward to relate the above Fourier series for pressure to a fully realistic 

calculated for that  mode. Each integral (E 5 )  is a non-dimensional quantity; and, 
indeed, by (C 43), co has the value 1. Furthermore, the Fourier series representation 
of the boundary displacement V<(y) has the form 

The pressure gradient ( a p / a z )  a t  the cochlear partition must be equal to the density 
p times the local acceleration, which is the second time derivative V[(y) of (E G ) .  By 
(E l), this gives a boundary condition 

P v < n  = 21(aPn/a2),=0, (E 7)  

which is identical with (D 5 )  except for the additional non-dimensional factor 5, on 
the left-hand side. The corresponding condition a t  the rigid boundary z = 1 is, on the 
other hand, unchanged: 

(apn/8z)z=l= 0. (X 8) 

There is absolutely no need to repeat the mathematics of solving (E 3) subject to 
(E 7 )  and (E 8) and deducing (2~~)~,~. That mathematics was given in appendix D 
(equations (D 3) to (D 7 ) )  and remains the same except for (i) the substitution (E 4) 
and (ii) the extra factor on the left of (E 7 ) .  Accordingly, the solution is 

(2pn),,0 = -pv<o,I([k2z2+ $n"."]$) 

where the function I is defined in (D 7 )  and plotted in figure 3. Substituted in (E l ) ,  
this gives the Fourier series for the pressure difference ( 2 ~ ) ? , ~  which forces the motions 
of the cochlear partition. 
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When this pressure difference varies with y, the right-hand side of the energy equa- 
tion (C 44) is modified to  

representing the rate of working by the distributed pressure difference (2p)$=,, in the 
actual bending mode (C 40). By (E 1) and (E 5 )  this rate of working is 

With the right-hand side of (C 44) replaced by (E 11) we obtain, on division by v,  
the equation of motion 

for the cochlear partition. This determines a t  once the fluid inertia, mf since, by (E 9), 
equation (E 12) taken the form (m+mf) v + s V  = 0 with 

m 

mf/p  = I (k1)  + 2 <:I([PP+ $n"n"]"). (E 13) 
n=l 

Equation (E 13) is a relatively simple form for the fluid inertia in terms of the COII- 

stants (E 5 )  for the bending mode and the function I defined in (D 7 )  and plotted in 
figure 3. 

The above calculation of mf, on a three-dimensional model that  avoids the main 
deficiencies of both the one-dimensional and two-dimensional models, answers at 
once the question: 'which of those two models gives better results? ' The answer is: 
'the two-dimensional model'; for such a model gives mf/p a value I(k1) larger than 
the corresponding one-dimensional value (kZ)-2 whereas the more accurate result 
(E 13) makes mf/p larger still; also, the ratio of the more accurate result (E 13) to 
I(k1) can never exceed the finite upper bound 

whereas the ratio of I(k1) t o  the one-dimensional value ( l ~ l ) - ~  grows without limit as 
k1 increases. If anything, the incorporation of three-dimensional effects intensifies the 
distinction noted already (appendix D) between two-dimensional and one-dimensional 
models, because the decrease of fluid inertia with increasing kl is made a little more 
gradual still, so as to retard energy flow still more steeply and enhance critical-layer 
absorption. 

On the whole, however, the principal conclusion from (E 13) is the quite modest 
quantitative extent of the change from two-dimensional theory. For moderate values 
of kl the ratio of (E 13) to  I(k1) is even less than its upper bound (E 14); a bound 
which should be attained only when kl is so large that I([k212 + $n2n-2]A) is indistinguish- 
able from I(k1) for all those values of n for which J, is significant. From a qualitative 
standpoint, (E 13) implies that  we are dealing with critical-layer absorption of the 
general type described in appendix B (equation (B 6) onwards) with N = 1 ; accordingly, 
the local behaviour near the point of resonance is as calculated in appendix D and 
plotted in figure 6. 
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For practical purposes, (E 13)  can be simplified to 

00 

mf/p = I(kZ) + 2 2 ci(k2Z2+ $n2n2)-i (E 15) 
n=l 

since figure 3 shows I(x) t o  be practically indistinguishable from x-l for x > $n (it is 
a t  most in the term n = 1 that (E 15)  might differ noticeably from (E 13), but equation 
(E 5 )  for en makes 5; very small because cos (nyl2Z) becomes zero within the main 
region of partition displacement). Expression (E 15) is easy to compute for various 
assumed bending modes of the cochlear partition. 

One great advantage of the WKB method is that it can be readily applied so as to 
take into account those gradual variations in the geometry of the cochlear partition 
that occur along the length of the cochlea. Prominent among these is the gradual 
increase in the breadth, 2b, of the basilar membrane with distance from the base, 
which occurs even while the overall width, 21, of the cochlea is becoming less. There is, 
in consequence, a quite significant gradual increase in the proportion b/l of the whole 
width of the cochlear partition taken up by basilar membrane. 

All this can be allowed for in the WKB method: the gradual changes in b/Z produce 
similar gradual changes in the constants en and so in the fluid inertia (E 15). At each 
point, the dispersion relationship 

leads to an expression for the energy propagation velocity, U = aw/ak, associated with 
the waves of a given frequency, in terms of which their amplitude distribution can be 
derived from constancy of energy flow. 

One simple calculation, as follows, can illustrate both the relatively modest extent 
of the change from two-dimensional theory and the fact that this change varies with 
b / l  in a manner that is straightforward to compute for any particular model of cochlear- 
partition bending. In  the calculation which follows, the mid-points of the cochlear 
partition and of the basilar membrane are taken to coincide at y = 1. Furthermore, 
a simple model of basilar-membrane deflection is adopted; essentially, ‘Model 1’ of 
Steele (1974).  I n  the context of the present paper, there is no point in pursuing more 
sophisticated bending-mode models because Steele and his associates have covered 
this ground rather thoroughly; the effect in each case is to produce a slightly different 
dependence of the constants en on b / l  and, thus, to modify the way in which m,, in 
the dispersion relationship (E 16),  varies with 611 as well as with kl .  

The simple bending mode assumed here is a half-wavelength sine wave confined to 
the basilar membrane alone. Thus, 

c(y) = ( ~ / 4 b ) c o s [ n ( y - Z ) / 2 b ]  for ly-11 < b;  [(y) = 0 for (y-ZI > b ;  (E 17) 

which, essentially, is the shape of the principal bending mode if the basilar membrane 
is taken as ‘simply supported’ at rigid supports. A mode like (E 17) with discon- 
tinuities of slope at y = 1 & b may give quite a stringent test of how far three-dimen- 
sional theory may depart from two-dimensional theory, because it makes the constants 
en fall off only in proportion to n-2 for large n (as opposed to n-3 for a mode without 
discontinuities of slope). 

o = [s/(m + mf) l i  (E 16) 

Actually, for the mode (€3 17) the constant en takes the value 

Q = { [ l -  (nh/l)2]-’cos (gnnb/z))cos ( inn) .  (E 18) 
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1 2 3 4 5 
nbfl 

FIGURE 16. When n is even, the coefficients 2(: occurring in equations (E 13) and (E 15) take, 
for the bending mode (E 17) ,  the values shown (plotted as a function of nb/ l ) .  When n is odd, 
6 = 0. 

Here, the last factor cos (inn) simply reflects a property of any symmetrical bending 
mode, that  5, is zero whenever n is odd. The remaining factor (in curly brackets) is 
a function of n b l l  alone; which, in the only case ( n b l l  = 1) where it appears to be 
undefined, is to  be replaced by its limiting value in. Figure 16 uses (E 18) to  plot as a 
function of n b / l  the values of the important coefficient 2c: which occurs in (E 13) 
or (E 15) when n is even only (it is zero when n is odd). In  spite of the point made in the 
preceding paragraph, this coefficient becomes quite insignificant for nb l l  2 3. For 
most practical values of b / l ,  therefore, the number of terms making a significant 
contribution in (E 15) is quite modest. 

Figure 17 uses these results to  plot five different values for the fluid inertia mf. 
Thus, it gives a log-log plot of mf/p against kl as calculated from one-dimensional 
theory (dotted line marked lD), two-dimensional theory (ZD) and three cases (3D) 
of three-dimensional theory. These are cases corresponding to  cochlear cross-sections 
where the ratio b l l  between the breadths of the basilar membrane and of the whole 
cochlear partition takes values 0.25, 0.5 and 0.75. The broken lines represent in each 
case the upper bound set by expression (E 14) to the ratio of mf/p to I(kZ). 

The important property of the 3D curves in figure 17 from the standpoint of critical- 
layer absorption is exhibited in the lower part of the diagram. This is the part relevant 
to  the general neighbourhood of a point of resonance; more precisely, it is the part 
whbre mf/p is falling towards low values, which may be even less than the corres- 
ponding values m/p for the inertia of the cochlear partition. I n  this part of the diagram, 
the dependence of mf/p on kl is tending rapidly towards the same 45" slope for the 
3D curves as for the 2D curve; in other words, towards the same variation as (k l ) - l .  
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This is the type of variation that led to the results plotted in figure 6; results which, 
as we now see, may be used near the point of resonance even on the basis of three- 
dimensional theory. 

I n  addition, the upper part of figure 17  gives some new and definitely interesting 
information. This is the part where the m term in the dispersion relationship (E 16) 
may be negligible, so that a t  the cross-section in question w varies as my&. 

Essentially, this upper part of the diagram predicts, especially in regions near the 
base where b l l  is relatively small, a much greater degree of dispersion for kl > 0.5 (that 
is, for k > 0.7 mm-I) than would be predicted on two-dimensional theory. In  this 
region the 1D curve represents absence of dispersion (mf proportional to k-2 makes 
w proportional to  k ) .  The curve showing the greatest departure from that (and, there- 
fore, the greatest dispersion) is the 3D curve for b / l  = 0-25. Its downward slope is 
reduced from 2.0 to 0-6 on the log-log plot before rising again to 1.0. I n  the region 
around kl = 1.5 (that is, k = 2 mm-l) where that downward slope is 0.6 the resulting 
frequency w is proportional to (compare k0.5 on two-dimensional theory). 

FIGURE 1 7 .  The ratio mrlp of fluid inertia to density, shown on a log-log plot against kl for the 
bending mode (E 17)  with b / l  = 0.26, 0.5 and 0.75. Results on the one- and two-dimensional 
theories of appendices C arid D (as previously given on a linear plot in figure 3) are included 
for comparison. 
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Accordingly, the energy propagation velocity ao/ak has fallen, not just to 0.5 times, 
but to 0.3 times the velocity of wave crests. This effect may assist the all-important 
process of reduction in the speed of energy propagation to make a somewhat earlier 
start.t  

In  short, three-dimensional models permit an anticipatory slowing down of energy 
propagation to precede its final bringing to a halt at  the point of resonance. This 
property, like many of the others noted in appendix E, has also been emphasized by 
Steele & Taber (1979b). 
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